The initial force between the two charges is given by:

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:
1. F
In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.
So, we have:

So, the new force is:

So the force has not changed.
2. F/4
In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.
So, we have:

So, the new force is:

So the force has decreased by a factor 4.
3. 6F
In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.
So, we have:

So, the new force is:

So the force has increased by a factor 6.
Answer:
<h3>The answer is 0.67 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you
Answer:
7800kg/m³
Explanation:
Density of iron in CGS unit is 7.8 g/cm3. Its density is SI is
Given the density of iron = 7.8 g/cm3.
The SI units must be in kg/m³
7.8g = 7.8/1000 kg
7.8g = 0.0078kg
1cm³ = 0.000001m³
7.8g/cm³
= 0.0078/0.000001 kg/m³
= 7800kg/m³
Hence the density in SI unit is 7800kg/m³
Answer:
I think the answer 1
Explanation:
im probably wrong too i dont know

Since the diameter of helium atom is approximately
, therefore the diameter of helium atom in nano meter,
