The easiest way to prove equivalence is to draw out a truth table and then compare the values. I'm going to show a truth table using proposition logic, it's the same result as using predicate logic.
P(x) v Q(x)
P |Q || PvQ || ~Q->P <----Notice how this column matches the PvQ but if you were to
---|---||--------||---------- <----continue the truth table with ~P->Q it would not be equivalent
T T T T
T F T T
F T T T
F F F F
Let me know if you would like an example, if the truth table doesn't help.
Answer: True
Step-by-step explanation:
A subset is a term used in the sets topic In mathematics to describe a Part of A larger values being considered.
Sample In experimental procedures is known as Part of what is to be used to determine the reaction of a larger mass of specimen.
Taking these two definitions by side, it is quite evident that both of them represent taking part of a larger picture to form a smaller picture which does not totally deviate from the larger picture being considered.
9/15
6/10
12/20
15/25
18/30
Hope this helps!! :)
Answer:
69x420=28,980
Step-by-step explanation:
i will
Answer:
It's B, -11/12
Step-by-step explanation: