Please provide the choices to select the possible choices.
Answer: a) vcar= 7 m/s ; b) a train= 0.65 m/s^2
Explanation: By using the kinematic equation for the car and the train we can determine the above values of the car velocity and the acceletarion of the train, respectively.
We have for the car
distance = v car* t, considering the length of train (81.1 m) travel by the car during the first 11.6 s
the v car = distance/time= 81.1 m/11.6s= 7 m/s
In order to calculate the acceleration we have to use the kinematic equation for the train from the rest
distance train = (a* t^2)/2
distance train : distance travel by the car at constant speed
so distance train= (vcar*36.35)m=421 m
the a traiin= (2* 421 m)/(36s)^2=0.65 m/s^2
Answer:
The final acceleration becomes (1/3) of the initial acceleration.
Explanation:
The second law of motion gives the relationship between the net force, mass and the acceleration of an object. It is given by :

m = mass
a = acceleration
According to given condition, if the mass of a sliding block is tripled while a constant net force is applied. We need to find how much does the acceleration decrease.

Let a' is the final acceleration,

m' = 3m



So, the final acceleration becomes (1/3) of the initial acceleration. Hence, this is the required solution.
Jeff uses all of his weight to lift the 600 lbs. C is your answer i do believe