1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rasek [7]
3 years ago
12

A train has a length of 81.1 m and starts from rest with a constant acceleration at time t = 0 s. At this instant, a car just re

aches the end of the train. The car is moving with a constant velocity. At a time t = 11.6 s, the car just reaches the front of the train. Ultimately, however, the train pulls ahead of the car, and at time t = 36.3 s, the car is again at the rear of the train. Find the magnitudes of (a) the car's velocity and (b) the train's acceleration. g
Physics
1 answer:
arlik [135]3 years ago
4 0

Answer: a) vcar= 7 m/s ; b) a train= 0.65 m/s^2

Explanation: By using the kinematic equation for the car and the train we can determine the above values of the car velocity and the acceletarion of the train, respectively.

We have for the car

distance = v car* t, considering the length of train (81.1 m) travel by the car during the first 11.6 s

the v car =  distance/time= 81.1 m/11.6s= 7 m/s

In order to calculate the acceleration we have to use the kinematic equation for the train from the rest

distance train = (a* t^2)/2

distance train : distance travel by the car at constant speed

so distance train= (vcar*36.35)m=421 m

the a traiin= (2* 421 m)/(36s)^2=0.65 m/s^2

You might be interested in
The light intensity incident on a metallic surface with a work function of 1.88 eV produces photoelectrons with a maximum kineti
ivanzaharov [21]

Answer:

KE = KE (incidental) - KE of emitted photons

or KE = h * f - Wf

So   h * f = KE + Wf = 1.2 + 1.88 = 3.08    incident energy

If you double the frequency then h * f = 6.16

KE = 6.16 - 1.2 = 4.96 eV

7 0
3 years ago
A ball that has a mass of 0.25 kg spins in a circle at the end of a 1.6 m rope. the ball moves at a tangential speed of 12.2 m/s
NARA [144]

The centripetal force acting on the ball will be 23.26 N.The direction of the centripetal force is always in the path of the center of the course.

<h3>What is centripetal force?</h3>

The force needed to move a body in a curved way is understood as centripetal force. This is a force that can be sensed from both the fixed frame and the spinning body's frame of concern.

The given data in the problem is;

m is the mass of A ball = 0.25 kg

r is the radius of circle= 1.6 m rope

v is the tangential speed = 12.2 m/s

\rm F_C is the centripetal force acting on the ball

The centripetal force is found as;

\rm F_C = \frac{mv^2}{r}  \\\\ F_C = \frac{0.25 \times (12.2)^2}{1.6}  \\\\ F_C=23.26\ N

Hence the centripetal force acting on the ball will be 23.26 N.

To learn more about the centripetal force refer to the link;

brainly.com/question/10596517

4 0
2 years ago
Monochromatic light with wavelength 588 nm is incident on a slit with width 0.0351 mm. The distance from the slit to a screen is
Norma-Jean [14]

Answer:

Explanation:

A. Using

Sinစ= y/ L = 0.013/2.7= 0.00481

စ=0.28°

B.here we use

Alpha= πsinစa/lambda

= π x (0.0351)sin(0.28)/588E-9m

= 9.1*10^-2rad

C.we use

I(စ)/Im= (sin alpha/alpha) ²

So

{= (sin0.091/0.091)²

= 3*10^-4

6 0
3 years ago
You know what type of shape you're in better than anyone else.
Crank

untrue the bmi machine know best about your body bmi stand for body mass index
8 0
3 years ago
Green light (λ = 518 nm) strikes a single slit at normal incidence. What width slit will produce a central maximum that is 3.00
MariettaO [177]

Answer:

6.9066 × 10⁻⁵ m

Explanation:

For constructive interference, the expression is:

d\times sin\theta=m\times \lambda

Where, m = 1, 2, .....

d is the distance between the slits.

The formula can be written as:

sin\theta=\frac {\lambda}{d}\times m ....1

The location of the bright fringe is determined by :

y=L\times tan\theta

Where, L is the distance between the slit and the screen.

For small angle , sin\theta=tan\theta

So,  

Formula becomes:

y=L\times sin\theta

Using 1, we get:

y=L\times \frac {\lambda}{d}\times m

Thus, the distance between the central maximum is 3.00 cm

First bright fringe , m = 1 occur at 3.00 / 2 = 1.50 cm

Since,

1 cm = 0.01 m

y = 0.0150 m

Given L = 2.00 m

λ = 518 nm

Since, 1 nm = 10⁻⁹ m

So,

λ = 518 × 10⁻⁹ m

Applying the formula as:

0.0150\ m=2.00\ m\times \frac {518\times 10^{-9}\ m}{d}\times 1

<u>⇒ d, distance between the slits = 6.9066 × 10⁻⁵ m</u>

7 0
3 years ago
Other questions:
  • Can you please help me with #9?
    12·1 answer
  • How many miles can you get on one tank of gas if your tank holds 18 gallons and you get 22 miles per
    7·2 answers
  • A moving object with a decreasing velocity covers distance during
    15·1 answer
  • A 75.3 kg bobsled is pushed along a horizontal surface by two athletes. After the bobsled is pushed a distance of 8.1 m starting
    15·1 answer
  • What is the difference between a heliocentric model of the solar system and a geocentric model?
    13·2 answers
  • Which of the following provides the best analogy for an electron in an atomic orbital?
    15·2 answers
  • Moving 2.0 coulombs of charge a distance of 6.0 meters from point A to point B within an electric field requires a 5.0-newton fo
    10·1 answer
  • Three charges, Q1, Q2, and Q3 are located in a straight line. The position of Q2 is 0.301 m to the right of Q1. Q3 is located 0.
    10·1 answer
  • A student carries a backpack for one mile , another student carries the same back pack for two miles . Compared to the first stu
    8·2 answers
  • A student is given a red and a blue liquid. The two samples of liquids are
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!