They will subtract to form a combined wave with a lower amplitude
Answer:
14m/s
Explanation:
Given parameters:
Radius of the curve = 50m
Centripetal acceleration = 3.92m/s²
Unknown:
Speed needed to keep the car on the curve = ?
Solution:
The centripetal acceleration is the inwardly directly acceleration needed to keep a body along a curved path.
It is given as;
a =
a is the centripetal acceleration
v is the speed
r is the radius
Now insert the parameters and find v;
v² = ar
v² = 3.92 x 50 = 196
v = √196 = 14m/s
Answer:
Rotational kinetic energy = 0.099 J
Translational kinetic energy = 200 J
The moment of inertia of a solid sphere is
.
Explanation:
Rotational kinetic energy is given by

where <em>I</em> is the moment of inertia and <em>ω</em> is the angular speed.
For a solid sphere,

where <em>m</em> is its mass and <em>r</em> is its radius.
From the question,
<em>ω</em> = 49 rad/s
<em>m</em> = 0.15 kg
<em>r</em> = 3.7 cm = 0.037 m


Translational kinetic energy is given by

where <em>v</em> is the linear speed.

<span>pile
battery
<span>power sector</span></span>