1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ElenaW [278]
3 years ago
10

Explain why an iron nail that is stuck to a magnet can pick up a paperclip

Physics
2 answers:
Artyom0805 [142]3 years ago
8 0

Answer:

because its metal

Explanation:

Alex777 [14]3 years ago
5 0
It will be able to pick up a magnet because the magnetic force will be strong on it, which will allow it to pick up many things.
You might be interested in
How does amplitude determine loudness?
sdas [7]

Answer:

Explanation:

Amplitude is a measure of the size of sound waves. It depends on the amount of energy that started the waves. Greater amplitude waves have more energy and greater intensity, so they sound louder.

7 0
2 years ago
Read 2 more answers
How is acceleration calculated?
steposvetlana [31]

Answer:

Acceleration is the change in velocity divided by time

Explanation:

This is the correct answer because distance divided by time is the position. Speed multiplied by time is the distance. And acceleration is not just velocity, but the change in velocity over time.

4 0
3 years ago
Read 2 more answers
Amy swims 500 m (0.5 km) in 6 minutes (0.1 hour ) . What was her speed in kilometers per hour ?
Scorpion4ik [409]
60 minutes = 1h
500/x = 10/100
She swam 5 kilometers per hour.
5 0
2 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
The phases of the moon are the changing appearances of the moon, as seen from Earth. Which phase happens immediately after a thi
Drupady [299]

The phases of the moon are the changing appearances of the moon, as seen from Earth. Which phase happens immediately after a third quarter moon are the following

Explanation:

  • After the full moon (maximum illumination), the light continually decreases. So the waning gibbous phase occurs next. Following the third quarter is the waning crescent, which wanes until the light is completely gone -- a new moon.

waning gibbous phase

  • The waning gibbous phase occurs between the full moon and third quarter phases. The last quarter moon (or a half moon) is when half of the lit portion of the Moon is visible after the waning gibbous phase.

Time takes by the moon to go through all the phases

about 29.5 days

  • It takes 27 days, 7 hours, and 43 minutes for our Moon to complete one full orbit around Earth. This is called the sidereal month, and is measured by our Moon's position relative to distant “fixed” stars. However, it takes our Moon about 29.5 days to complete one cycle of phases (from new Moon to new Moon).
  • At 3rd quarter, the moon rises at midnight and sets at noon. Then we see only a crescent. At new, the moon rises at sunrise and sets at sunset, and we don't see any of the illuminated side!
6 0
3 years ago
Read 2 more answers
Other questions:
  • 4. Ron and Hermoine are fighting over the Monster book of Monsters and they are both pulling on the book with a force of 14 N (e
    10·2 answers
  • 4) Kinetic energy is directly related to _______
    5·1 answer
  • What is lateral inverson​
    7·2 answers
  • During a testing process, a worker in a factory mounts a bicycle wheel on a stationary stand and applies a tangential resistive
    11·1 answer
  • What is an issue involving the legal system that is currently getting a lot of attention in Florida? What is your opinion on the
    13·1 answer
  • Why do you think nutrition experts recommend that young people<br> eat foods high in calcium?
    9·1 answer
  • In order to be considered an ion, an atom must have a
    12·1 answer
  • Convert 5.7 cm to mm:
    8·2 answers
  • Which planet in our solar system, discovered in 1781, was named after the greek god of the sky?.
    10·1 answer
  • Auto companies frequently test the safety of automobiles by putting themthrough crash tests to observe the integrity of the pass
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!