Answer:
Hope this help you!!
Explanation:
Crust : The crust is the thinnest layer of the Earth. It has an average thickness of about 18 miles below land, and around 6 miles below the oceans. The crust is the layer that makes up the Earth's surface and it lies on top of a harder layer, called the mantle.
Mantle : The mantle is the mostly-solid bulk of Earth's interior. The mantle lies between Earth's dense, super-heated core and its thin outer layer, the crust. The mantle is about 1,802 miles thick, and makes up a whopping 84% of Earth's total volume
Outer Core : The outer core is the third layer of the Earth. It is the only liquid layer, and is mainly made up of the metals iron and nickel, as well as small amounts of other substances. The outer core is responsible for Earth's magnetic field. As Earth spins on its axis, the iron inside the liquid outer core moves around.
Inner Core : It's Almost The Size of the Moon. The Earth's inner core is surprisingly large, measuring 1,516 miles across. It's Mostly Made of Iron. It Spins Faster Than the Surface of the Earth. It Creates a Magnetic Field.
Answer:
(a) When the resultant force is pointing along east line, the magnitude and direction of the second force is 280 N East
(b) When the resultant force is pointing along west line, the magnitude and direction of the second force is 560 N West
Explanation:
Given;
a force vector points due east,
= 140 N
let the second force = 
let the resultant of the two vectors = F
(a) When the resultant force is pointing along east line
the second force must be pointing due east


(b) When the resultant force is pointing along west line
the second force must be pointing due west and it must have a greater magnitude compared to the first force in order to have a resultant in west line.


To solve this problem, we must remember about the law of
conservation of momentum. The initial momentum mist be equal to the final
momentum, that is:
m1 v1 + m2 v2 = (m1 + m2) v’
where v’ is the speed of impact
Since we are not given the masses of each car m1 and m2,
so let us assume that they are equal, such that:
m1 = m2 = m
Which makes the equation:
m v1 + m v2 = (2 m) v’
Cancelling m and substituting the v values:
50 + 48 = 2 v’
2 v’ = 98
v ‘ = 49 km/h
<span>The speed of impact is 49 km/h.</span>
<h2> The potential and kinetic energy of airplane are affected by these factors </h2>
Explanation:
When airplane rises up , it requires potential energy . This potential energy can be taken from the kinetic energy of airplane .
Thus if the speed of wind is larger , it can either oppose the motion of velocity or can favour the velocity of airplane . By which its kinetic energy is effected .
If the weight of airplane is changed , it will effect the potential energy required . Thus heavier plane requires higher potential energy for attaining the same height .
Thus these two factor has important role in the flight of airplane .
Answer:
Kinetic energy would increase by a factor of 4 where as momentum would increase by a factor of 2.
Explanation:
Kinetic Energy is given by 0.5*mass*velocity^2. Kinetic Energy is proportional to Velocity^2.
Momentum is given by mass*velocity. Momentum is proportional to Velocity.
If the velocity of an object is doubled, Kinetic energy would increase by a factor of 2^2 i.e 4 times. Momentum would increase by a factor of 2.