Answer:
Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry.
Explanation:
<span>internet tension = mass * acceleration internet tension = 23 – Friction tension = 14 * acceleration Friction tension = µ * 14 * 9.8 = µ * 137.2 23 – µ * 137.2 = 14 * acceleration Distance = undemanding speed * time undemanding speed = ½ * (preliminary speed + very final speed) Distance = ½ * (preliminary speed + very final speed) * time Distance = 8.a million m, preliminary speed = 0 m/s, very final speed = a million.8 m/s 8.a million = ½ * (0 + a million.8) * t Time = 8.a million ÷ 0.9 = 9 seconds Acceleration = (very final speed – preliminary speed) ÷ time Acceleration = (a million.8 – 0) ÷ 9 = 0.2 m/s^2 23 – µ * 137.2 = 14 * 0.2 resolve for µ</span>
The equation we use is mλ=dsinθ for intensity maximas. We are given at the first maximum (m=1), it occurs at 17.8 degrees. Thus we can solve for d by substituting known values into our equation.
(1) (632.8*10^-9m)=dsin(17.8) => d = 2.07*10^-6m
Next we want to find the angle at the second maximum (m=2) so we need to solve for θ.
(2) (632.8*10^-9m) = (2.07*10^-6m)sinθ
θ=37.69 degrees
Hopes this helps!
P.S. I hope this is right. If not sorry in advance.
Answer:
upthrust or BUOYANT FORCE =Vdg
volume=LWH
upthrust=(4cm×5cm×2cm)×1g/cm²×g
upthrust=40cm³×1g/cm³×g
upthrust=40gf or 0.04kg×10m/s²=0.4N
weight of the displaced liquid is upthrust.
so mass=40g or 0.04kg
upthrust=40gf or 0.4Nand mass of the displaced liquid=40g or 0.04kg
please mark brainliest, hope it helped
Answer:
Has been removed 1.458 moles.
Explanation:
n1= 1.8 mol
p1= 27.3 atm
p2= 5.2 atm
n2= ?
n2= n1 * p2/p1
n2= 0.342 moles
Δn= n1-n2
Δn= 1.458 moles