Answer:if youre looking for the weight of the thermas in genral it should be 500n
Explanation:using the formula w=mg
w=500x10
giving us 500 newtons which is the weight.
Tungsten has the highest tensile strength of any natural metal, but it's brittle and tends to shatter on impact.
Titanium has a tensile strength of 63,000 PSI. ...
Chromium, on the Mohs scale for hardness, is the hardest metal around.
The formula for the acceleration due to gravity is:
a = Gm/r²
where
G is the universal gravitational constant = 6.6726 x 10⁻¹¹ N-m²/kg²
m is the mass of planet
r is the radius of planet
So, if they have the same a:
m₁/r₁² = m₂/r₂²
So, if m₁ = m and r₂ = 2r₁,
m/r₁² = m₂/(2r₁)²
m₂ = 4m
<em>Thus, the answer is D.</em>
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer:
λ = 1360 m
Explanation:
Given data:
frequency of driving nails is given as 1 stroke per second mean at every 0.25 sec she hit the nails
speed of sound is given as 340 m/s
we know that the wave equation is given as
Speed = frequency × wavelength,
v = f × λ
where,
v = speed in meters/second (m/s)
f = frequency in Hertz (Hz)
substituing value to get wavelength of her driving nails


λ = 1360 m