1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
13

What gas law applies to the situation you have described above. Why?

Physics
1 answer:
Allushta [10]3 years ago
6 0

If you give us the situation described then I'll be able to help.

You might be interested in
Some bats have specially shaped noses that focus ultrasound echolocation pulses in the forward direction. Why is this useful?
creativ13 [48]

Answer:

The evolutionary success of bats is accredited to their ability, as the only mammals, to fly and navigate in darkness by echolocation, thus filling a niche exploited by few other predators. Over 90% of all bat species use echolocation to localize obstacles in their environment by comparing their own high frequency sound pulses with returning echoes. The ability to localize and identify objects without the use of vision allows bats to forage for airborne nocturnal insects, but also for a diverse range of other food types including motionless perched prey or non-animal food items.

The agility and precision with which bats navigate and forage in total darkness, is in large part due to the accuracy and flexibility of their echolocation system. The echolocation clicks of the few echolocating Pteropodidae (Rousettus) are fundamentally different from the echolocation sounds produced in the larynx that we focus on here, and thus not part of this review. Many studies have shown that bats adapt their echolocation calls to a variety of conditions, changing duration and bandwidth of each call and the rate at which calls are emitted in response to changing perceptual demands . In recent years the intensity and directionality of echolocation signals has received increasing research attention and it is becoming evident that these parameters also play a major role in how bats successfully navigate and forage. To perceive an object in its surroundings, a bat must ensonify the object with enough energy to return an audible echo. Hence, the intensity and duration of the emitted signal act together to determine how far away a bat can echolocate an object. Equally important is signal directionality. Bat echolocation calls are directional, i.e., more call energy is focused in the forward direction than to the sides (Simmons, 1969; Shimozawa et al., 1974; Mogensen and Møhl, 1979; Hartley and Suthers, 1987, 1989; Henze and O'Neill, 1991). An object detectable at 2 m directly in front of the bat may not be detected if it is located at the same distance but off to the side. Consequently, at any given echolocation frequency and duration, it is the combination of signal intensity and signal directionality that defines the search volume, i.e., the volume in space where the bat can detect an object.

The aim of this review is to summarize current knowledge about intensity and directionality of bat echolocation calls, and show how both are adapted to habitat and behavioral context. Finally, we discuss the importance of active motor-control to dynamically adjust both signal intensity and directionality to solve the different tasks faced by echolocating bats.

Explanation:

3 0
3 years ago
A 0.106-A current is charging a capacitor that has square plates 6.00 cm on each side. The plate separation is 4.00 mm. (a) Find
FrozenT [24]

Answer:

The time rate of change of flux is 1.34 \times 10^{10} \frac{V}{s}

Explanation:

Given :

Current I = 0.106 A

Area of plate A = 36 \times 10^{-4} m^{2}

Plate separation d = 4 \times 10^{-3} m

(A)

First find the capacitance of capacitor,

   C = \frac{\epsilon _{o} A }{d}

Where \epsilon _{o} = 8.85 \times 10^{-12}

   C = \frac{8.85 \times 10^{-12 } \times 36 \times 10^{-4}  }{4 \times 10^{-3} }

   C = 7.9 \times 10^{-12} F

But   C = \frac{Q}{V}

Where Q = It

  C = \frac{It}{V}

  V = \frac{It}{C}

Now differentiate above equation wrt. time,

  \frac{dV}{dt} = \frac{I}{C}

       = \frac{0.106}{7.9 \times 10^{-12} }

       = 1.34 \times 10^{10} \frac{V}{s}

Therefore, the time rate of change of flux is 1.34 \times 10^{10} \frac{V}{s}

8 0
3 years ago
1. A cyclist accelerates from 0 m/s to 9 m/s in 3 seconds. What is his<br>acceleration?​
Lapatulllka [165]

The cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².

Answer:

Explanation:

Acceleration exerted by an object is the measure of change in speed or velocity of that object with respect to time. So the initial and final velocities play a major role in determining the acceleration of the cyclist. As here the initial velocity of the cyclist is the speed at rest and that is given as 0 m/s. Then after 3 seconds, the velocity of the cyclist changes to 9 m/s.

Then acceleration = change in velocity/Time.

Acceleration = \frac{Change in velocity}{Time taken}

Acceleration = (9-0)/3=9/3=3 m/s².

So the cyclist accelerates from 0 m/s to 9 m/s in 3 seconds with an acceleration of 3 m/s².

3 0
3 years ago
1.How long dose long term alcohol abuse affect the liver ?
Agata [3.3K]
1. B- it can cause cirrhosis
2. C- intoxication
3. A- admit to having a problem with alcohol
4. D- binge-drinking
5. A- depressant
6. true
7. false
7 0
3 years ago
Read 2 more answers
A room has a wall with an R value of 18 F sq.ft. hr/BTU. The room is 15 feet long and 11 feet wide with walls that are 9 ft high
seropon [69]

Answer:

The heat transferred through the wall that day is  13728 BTUs

Explanation:

Here, we have the area of the wall given as

Area of wall = 2 × Length × Height + 2 × Width × Height

Length = 15 feet

Width = 11 Feet and

Height = 9 feet

Therefore, the area = 2×15×9 + 2×11×9 = 468 ft²

Temperature difference is given by

Average outside temperature - Wall temperature = 40 - 18 = 22 °F

Therefore the heat transferred through the wall that day (24 hours) at 18 sq.ft. hr/BTU is given by;

468 × 22 × 24/18 = 13728 = 13728 BTUs.

5 0
3 years ago
Other questions:
  • Name the missing force... Normal <br>   Spring <br>   Tension <br>   Air Resistance
    8·1 answer
  • If the power of an engine is known and the amount of time that the engine exerts this power is known, what can be calculated?
    11·1 answer
  • Neglecting losses in a transformer, it's input and output ______ are equal.
    10·2 answers
  • Design at least two independent experiments to determine the wavelength of a microwave source. You have a microwave source, micr
    14·1 answer
  • Which does not provide the energy to spin a turbine?
    9·2 answers
  • Scientists can find the absolute age of a rock by using
    9·1 answer
  • A 1 kg pistol, initially at rest, shoots a bullet with a mass of 2.5g. After
    13·1 answer
  • A. 1 and 2 &gt; 3 and 4 = 4 and 5
    13·1 answer
  • Which graph represents a nonlinear relationship?
    14·2 answers
  • 6) A boat crosses a river at a constant engine speed of 2.0 m/s under pointed Directly west. The river runs directly south at 2.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!