Answer:
When there is a change in magnetic flux linkage through a loop of wire, an electromotive force is induced in the loop, according to the Faraday-Newmann-Lenz Law:

where
N is the number of turns in the loop
is the change in magnetic flux through the loop
is the time elapsed
The negative sign in the formula represents Lenz's Law, and tells us about the direction of the electromotive force.
In fact, the negative sign means that the direction of the induced emf is such that to oppose to the change in the magnetic flux that originated the induced emf.
This is a consequence of the law of conservation of energy: no energy can be created out of nowhere. In fact, when the emf is induced in the loop, electrical energy appears in the circuit; however, this electric energy cannot come out of nowhere. Instead, it is just "created" from the transformation of some other form of energy (for instance, the mechanical energy that is used to move the loop in the magnetic field, and changing its magnetic flux).
The negative sign in Lenz's Law tells exactly this: the direction of the induced emf is such that it opposes the initial change in magnetic flux that generated the induced emf, so that overall the total energy is conserved.
Answer: A) 
Explanation:
The equation for the moment of inertia
of a sphere is:
(1)
Where:
is the moment of inertia of the planet (assumed with the shape of a sphere)
is the mass of the planet
is the radius of the planet
Isolating
from (1):
(2)
Solving:
(3)
Finally:
Therefore, the correct option is A.
Answer:
The average speed can be calculated as the quotient between the distance travelled and the time needed to travel that distance.
To go to the school, he travels 2.4 km in 0.6 hours, then here the average speed is:
s = (2.4km)/(0.6 hours) = 4 km/h
To return to his home, he travels 2.4km again, this time in only 0.4 hours, then here the average speed is:
s' = (2.4 km)/(0.4 hours) = 6 km/h.
Now, if we want the total average speed (of going and returning) we have that the total distance traveled is two times the distance between his home and school, and the total time is 0.6 hours plus 0.4 hours, then the average speed is:
S = (2*2.4 km)/(0.6 hours + 0.4 hours)
S = (4.8km)/(1 h) = 4.8 km/h
Answer:
E) True. The girl has a larger tangential acceleration than the boy.
Explanation:
In this exercise they do not ask us to say which statement is correct, for this we propose the solution to the problem.
Angular and linear quantities are related
v = w r
a = α r
the boy's radius is r₁ = 1.2m the girl's radius is r₂ = 1.8m
as the merry-go-round rotates at a constant angular velocity this is the same for both, but the tangential velocity is different
v₁ = w 1,2 (boy)
v₂ = w 1.8 (girl)
whereby
v₂> v₁
reviewing the claims we have
a₁ = α 1,2
a₂ = α 1.8
a₂> a₁
A) False. Tangential velocity is different from zero
B) False angular acceleration is the same for both
C) False. It is the opposite, according to the previous analysis
D) False. Angular acceleration is equal
E) True. You agree with the analysis above,
Static friction is the friction that exists between a stationary object and the surface on which it's resting.
frictional force occurs when you try to push an object alongside a surface.