Answer:
18
Step-by-step explanation:
24*.75=18
Answer:
Step-by-step explanation:
Prove: That the sum of the squares of 4 consecutive integers is an even integer.
An integer is a any directed number that has no decimal part or indivisible fractional part. Examples are: 4, 100, 0, -20,-100 etc.
Selecting 4 consecutive positive integers: 5, 6, 7, 8. Then;
= 25
= 36
= 49
= 64
The sum of the squares = 25 + 36 + 49 + 64
= 174
Also,
Selecting 4 consecutive negative integers: -10, -11, -12, -13. Then;
= 100
= 121
= 144
= 169
The sum of the squares = 100 + 121 + 144 + 169
= 534
Therefore, the sum of the squares of 4 consecutive integers is an even integer.
Answer:
Step-by-step explanation:
y+2 = 3 * (x+2)
Answer:
and

Step-by-step explanation:
The standard equation of a circle is
where the coordinate (h,k) is the center of the circle.
Second Problem:
- We can start with the second problem which uses this info very easily.
- (h,k) in this problem is (-2,15) simply plug these into the equation.
. - We can also add the radius 3 and square it so it becomes 9. The equation.
- This simplifies to
.
First Problem:
- The first problem takes a different approach it is not in standard form. But we can convert it to standard form by completing the square.
first subtract 37 from both sides so the equation is now
.
by adding
to both the x and y portions of this equation you can complete the squares.
and
which equals 49 and 4.- Add 49 and 4 to both sides and the equation is now:
You can simplify the y and x portions of the equations into the perfect squares or factored form
and
. - Finally put the whole thing together.
.
I hope this helps!