Answer:
The value is 
Explanation:
From the question we are told that
The velocity which the rover is suppose to land with is
The mass of the rover and the parachute is
The drag coefficient is
The atmospheric density of Earth is 
The acceleration due to gravity in Mars is 
Generally the Mars atmosphere density is mathematically represented as

=> 
=> 
Generally the drag force on the rover and the parachute is mathematically represented as

=>
=>
Gnerally this drag force is mathematically represented as

Here A is the frontal area
So

=> 
=> 
Answer:
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Explanation:
Given:
v = (-23.2, -104.4, 46.4) m/s
Above expression describes spacecraft's velocity vector v.
Find:
Find unit vector in the direction of spacecraft velocity v.
Solution:
Step 1: Compute magnitude of velocity vector.
mag (v) = sqrt ( 23.2^2 + 104.4^2 + 46.4^2)
mag (v) = 116.58 m/s
Step 2: Compute unit vector unit (v)
unit (v) = vec (v) / mag (v)
unit (v) = [ -23.2 i -104.4 j + 46.4 k ] / 116.58
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s
Answer:
horizontal component of normal force is equal to the centripetal force on the car
Explanation:
As the car is moving with uniform speed in circle then the force required to move in the circle is towards the center of the circle
This force is due to friction force when car is moving in circle with uniform speed
Now it is given that car is moving on the ice surface such that the friction force is zero now
so here we can say that centripetal force is due to component of the normal force which is due to banked road
Now we have


so we have

so this is horizontal component of normal force is equal to the centripetal force on the car