The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
Answer:
As the temperature increases, the kinetic energy of the particles increases.
Explanation:
When the temperature of the substance increases, the velocity increases which makes the movement of the particles to speed up. This causes the particles to increase. Therefore, as the temperature increases, the kinetic energy of the particles also increases.
Answer:
A force pump can be used to raise water by a height of more than 10m, the maximum height allowed by atmospheric pressure using a common lift pump.
In a force pump, the upstroke of the piston draws water, through an inlet valve, into the cylinder. On the downstroke, the water is discharged, through an outlet valve, into the outlet pipe.
Answer: Because of the different wave speed from light and sound. Explanation: There is a major difference between the speed wave of light and sound, light travels at 186, 282 miles per second, and sound can travel at different speeds and its significantly slower so it is easier to measure it
Explanation: