Answer:
2.029×10^-18 J
Explanation:
E=hv
so
E=(3.06×10^15)*(6.63×10^-34)
E=2.029×10^-18 J
The whole point of this problem is to check how well you understand
the definitions of a few important quantities, like velocity, speed, distance,
displacement etc.
Before we begin, I just want to mention that 'MPG' is not a unit of either
velocity or speed, but I think I know what you mean.
-- For some reason, Ms. Eaddy rode 100 miles north on the train, then
stayed aboard while the train turned around and took her 150 miles south.
The total distance she rode was (100 + 150) = 250 miles. But she ended up
50 miles south of where she began.
-- Displacement for the whole trip = distance and direction from the start point
to the finish point.
Displacement = 50 miles south
-- Average velocity = (displacement) / (time)
50 miles south / 3.5 hours = <u>14.29 miles per hour south</u>
<span>They are balanced. If the forces were not balanced the book would move*. In this example, the downward force of gravity on the book is counterbalanced by the upthrust of the desk. </span>
Answer:
Gravity is the force by which a planet or other body draws objects toward its center. The force of gravity keeps all of the planets in orbit around the sun.
<em><u>Please mark as brainliest</u></em>
Have a great day, be safe and healthy
Thank u
XD
Answer:
v ’= v + v₀
a system can be another vehicle moving in the opposite direction.
Explanation:
In an inertial reference frame the speed of the vehicle is given by the Galileo transformational
v ’= v - v₀
where v 'is the speed with respect to the mobile system, which moves with constant speed, v is the speed with respect to the fixed system and vo is the speed of the mobile system.
The vehicle's speedometer measures the harvest of a fixed system on earth, in this system v decreases, for a system where v 'increases it has to be a system in which the mobile system moves in the negative direction of the x axis, whereby the transformation ratio is
v ’= v + v₀
Such a system can be another vehicle moving in the opposite direction.