Answer:
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Explanation:
Chemical equation:
4Al(s) + 3O₂(l) → 2AlO₃(s)
Given data:
Mass of aluminium = 87 g
Moles of oxygen needed = ?
Solution:
Moles of aluminium:
Number of moles of aluminium= Mass/ molar mass
Number of moles of aluminium= 87 g/ 27 g/mol
Number of moles of aluminium= 3.2 mol
Now we will compare the moles of aluminium with oxygen.
Al : O₂
4 : 3
3.2 : 3/4×3.2 = 2.4 mol
2.4 moles of oxygen are needed to react with 87 g of aluminium.
Answer:
if you want to find average speed so u need to use this formula
Average speed = 
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
Ionic bond is a type of chemical bond that refers to the bonding of <span>oppositely charged ions (anions and cations) because of attraction and the </span>transfer of valence electron(s) between atoms. Cation is the metal that loses electrons and become a positively charged cation, and anions are
the nonmetal that accepts those electrons to become a negatively charged
anion.
According this explanation, an ionic bond is:
B. the force that holds the valence electrons to the atom