Answer:
0.4 M
Explanation:
Equilibrium occurs when the velocity of the formation of the products is equal to the velocity of the formation of the reactants. It can be described by the equilibrium constant, which is the multiplication of the concentration of the products elevated by their coefficients divided by the multiplication of the concentration of the reactants elevated by their coefficients. So, let's do an equilibrium chart for the reaction.
Because there's no O₂ in the beginning, the NO will decompose:
N₂(g) + O₂(g) ⇄ 2NO(g)
0.30 0 0.70 Initial
+x +x -2x Reacts (the stoichiometry is 1:1:2)
0.30+x x 0.70-2x Equilibrium
The equilibrium concentrations are the number of moles divided by the volume (0.250 L):
[N₂] = (0.30 + x)/0.250
[O₂] = x/0.25
[NO] = (0.70 - 2x)/0.250
K = [NO]²/([N₂]*[O₂])
K = 
7.70 = (0.70-2x)²/[(0.30+x)*x]
7.70 = (0.49 - 2.80x + 4x²)/(0.30x + x²)
4x² - 2.80x + 0.49 = 2.31x + 7.70x²
3.7x² + 5.11x - 0.49 = 0
Solving in a graphical calculator (or by Bhaskara's equation), x>0 and x<0.70
x = 0.09 mol
Thus,
[O₂] = 0.09/0.250 = 0.36 M ≅ 0.4 M
Answer:
Only the number of neutrons change.
The suffix -ene tells that there is a double bond present in the molecule, and the 2 tells where in the molecule the bond is located. The molecule looks like this:
CH3-CH=CH-CH3
-ane indicates single bonds
-ene indicates at least one double bond
-yne indicates at least one triple bond
According to Boyle's law, if the temperature were tripled as the number of moles and the volume were held constant, the pressure would triple (option C).
<h3>What is Boyle's law?</h3>
Boyle's law is the observation that the pressure of an ideal gas is inversely proportional to its volume at constant temperature.
However, when the temperature of a gas is increased, the pressure of the gas also increases provided the volume is constant.
According to this question, the temperature of a gas tripled as the number of moles and the volume were held constant.
Therefore, according to Boyle's law, if the temperature were tripled as the number of moles and the volume were held constant, the pressure would triple.
Learn more about Boyle's law at: brainly.com/question/1437490
#SPJ1
The dye molecules move in a directed way from high to low concentration
Explanation:
The statement that best describes the motion of dye molecule in water is directed from a region of high to low concentration. The motion of the particles of the dye in water is described as diffusion:
- diffusion is the movement of molecules of a substance from one position to another.
- diffusion occurs from a region of high concentration to that of a low concentration.
- the dye in the water solution causes an increase in concentration of an area where it is dropped.
- this causes the particles to spread outward in the solution.
- a concentration gradient is set up between the two parts of the solution.
- this gradient facilitates the movement of the dye particles.
Learn more:
diffusion brainly.com/question/6873289
#learnwithBrainly