Solute is something that is being dissolved { ex : sugar , salt}
Solvent is something that has ability to dissolve things { ex : water}
False because the solvent is present in larger amounts...
<u>Answer:</u> The correct option is A) They have fixed energy values.
<u>Explanation:</u>
Electron is one of the sub-atomic particle present around the nucleus of an atom which is negatively charged.
In an atomic model, it is assumed that the electron revolves around the nucleus in discrete orbits having fixed energy levels.
These electrons when jumping from one energy level to another, some amount of radiation is either emitted or absorbed.
These fixed energy levels are given by the Bohr model and thus, the electrons are quantized.
Hence, the correct option is A) They have fixed energy values.
Answer:
I believe Na
Explanation:
Copper, because it is the only metal out of all of them.
Therefore copper is the only element that can loose electrons to have a positive charge, it is the most likely to become a cation.
In an unknown liquid, the percentage composition with respect to carbon, hydrogen and iodine is 34.31%, 5.28% and 60.41% respectively.
Let the mass of liquid be 100 g thus, mass of carbon, hydrogen and oxygen will be 34.31 g, 5.28 g and 60.41 g respectively.
To calculate molecular formula of compound, convert mass into number of moles as follows:

Molar mass of carbon, hydrogen and iodine is 12 g/mol, 1 g/mol and 126.90 g/mol.
Taking the ratio:

Putting the values,

Thus, molecular formula of compound will be
.
First, find the number of moles of UF6
Avagadro's number = 6.023 x 10^23
Number of moles = 8.0 x 10^26 / Avagadro's number = 8.0 x 10^26 / 6.023 x 10^23 = 1.328 x 10³ moles
Molecular weight of UF6 = Molecular weight of U (238.02891) + Molecular weight of F6 (6 x 18.9984032) = 238.02891 + 113.9904192 = 352.0193292 g/mol
Therefore mass of 8.0 x 10^26 UF6 molecules = 352.0193292 g/mol x 1.328 x 10³ moles = 467.481669 x 10³ grams