Answer:
70.6 %
Explanation:
First step, we define the reaction:
2P + 3Br₂ → 2PBr₃
We determine the moles of reactant:
35 g . 1mol / 159.8 g = 0.219 moles
We assume, the P is in excess, so the bromine is the limiting reagent.
3 moles of Br₂ can produce 2 moles of phophorous tribromide
Then, 0.219 moles may produce (0.219 . 2) /3 = 0.146 moles of PBr₃
We convert moles to mass:
0.146 mol . 270.67 g /mol = 39.5 g
That's the 100 % yield reaction, also called theoretical yield. The way to determine the % yield is:
(Yield produced / Thoeretical yield) . 100
(27.9 / 39.5) . 100 = 70.6 %
Atomic number
atomic mass
group|family
periods
and element symbols
The statement that best describes how an ionic compound dissolves in water is as follows: it separates into individual molecules and is an electrolyte, which is option C.
<h3>What is an ionic compound?</h3>
Ionic compound is any compound is a chemical compound composed of ions (charged atoms) held together by electrostatic forces termed ionic bonding.
Ionic compounds are electrolytes i.e. a substance when, in solution or when molten, ionizes and conducts electricity.
For example; sodium chloride (NaCl) is an ionic compound breaks down into sodium ions (Na+) and chloride ion (Cl-).
Therefore, the statement that best describes how an ionic compound dissolves in water is as follows: it separates into individual molecules and is an electrolyte.
Learn more about ionic compound at: brainly.com/question/9167977
#SPJ1
Answer:
xy (-b+c+q) is the answer to this
The rate of entropy change:
The rate of entropy change of the working fluid during the heat addition process is 3 kW/K
What is the Carnot cycle?
- The Carnot Cycle is a thermodynamic cycle made up of reversible isothermal expansion, adiabatic expansion, isothermal compression, and adiabatic compression processes in succession.
- The ratio of the heat absorbed to the temperature at which the heat was absorbed determines the change in entropy.
The entropy of a system:
The rate of heat addition is expressed as,
Q = 
The entropy of a system is a measure of how disorderly a system is getting. The rate of entropy generation during heat addition is,

Calculation:
<u>Given:</u>
= 400K
= 1600K
W = 3600 kW
Put all the values in the above equation, and we get,
=
= 3 kW/K
The rate of entropy change is 3 kW/K
Learn more about the Carnot cycle here,
brainly.com/question/13002075
#SPJ4