Answer:
(53.3; 56.1)
Step-by-step explanation:
Given that:
Sample size, n = 41
Mean, xbar = 54.7
Standard deviation, s = 5.3
Confidence level, Zcritical at 90% = 1.645
Confidence interval :
Xbar ± Margin of error
Margin of Error = Zcritical * s/sqrt(n)
Margin of Error = 1.645 * 5.3/sqrt(41)
Margin of Error = 1.362
Lower boundary = 54.7 - 1.362 = 53.338
Upper boundary = 54.7 + 1.362 = 56.062
(53.3 ; 56.1)
Answer:
The domain of the function is all real values of x, except
and 
Step-by-step explanation:
We are given the following function:

It's a fraction, so the domain is all the real values except those in which the denominator is 0.
Denominator:
Quadratic equation with 
Using bhaskara, the denominator is 0 for these following values of x:



The domain of the function is all real values of x, except
and 
A.

- There are no critical points because the graph is neither continuous nor smooth. There is a discontinuity at x = 2.
B.

- The absolute maximum is f(lim⇒-2_-) = infinity. The absolute minimum is f(lim⇒-2_+) = -infinity. This applies to the interval [-10, 7].
C.

- The absolute maximum is f(5) = 26/7 or 3.714. The absolute mimimum is f(0) = 1.75. This applies to the interval [0, 5]. Proof: graph f(x) at [0, 5] on a graph or graphing calculator.
Answer:
It is B. Commutative Property of Addition. I selected d from the other answer and it was wrong, just trust me it b. Commutative.
Hope this helps you.
B......hope this was helpful