1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
3 years ago
13

There are two mystery numbers. The sum of 2 times the first number and 5 times the second number is -5. The sum of 3 times the f

irst number and 10 times the second number is -5. What are the two numbers?
Mathematics
2 answers:
poizon [28]3 years ago
8 0

Answer:

X=-5,Y=1

Step-by-step explanation:

First equation: 2X+5Y=-5

Second equation:3X+10Y=-5

If we subtract the first from the second equation

(3X+10Y)-(2X+5Y)= 0 so, X+5Y= 0

So X= -5Y .then substitute in the second equation

So ,3(-5Y)+10Y= -5 , therefore -15Y + 10Y=-5 so, -5Y=-5 which means that Y=1

Then substitute with that in the first equation so 2X+5= -5

2X= -10 therefore X=-5

Leokris [45]3 years ago
5 0

Answer:

the two numbers are -5 and 1

Step-by-step explanation:

Let x and y be the first number and second number respectively.

According to the question, we can find 2 equations:

2x + 5y = -5

3x + 10y = -5

On solving,

x = -5

y = 1

You might be interested in
Which is the upper left quadrant on the coordinate plane?
Lisa [10]

Answer:

the upper left Quadrant is Quadrant II

4 0
3 years ago
Read 2 more answers
NEED HELP!!!
AnnyKZ [126]

Answer:

see explanation

Step-by-step explanation:

(1)

\frac{6}{2} = \frac{4}{p} ( cross- multiply )

6p = 8 ( divide both sides by 6 )

p = \frac{8}{6} = \frac{4}{3}

(2)

\frac{n}{4} = \frac{8}{7} ( cross- multiply )

7n = 32 ( divide both sides by 7 )

n = \frac{32}{7}

(3)

\frac{5}{3} = \frac{x}{4} ( cross- multiply )

3x = 20 ( divide both sides by 3 )

x = \frac{20}{3}

6 0
3 years ago
(6y + 3) minus (3y + 6) when y=7
never [62]

Answer:

y

Step-by-step explanation:

((((2•3y3) -  22y2) -  3y) -  —) -  2

                               y    

STEP

4

:

Rewriting the whole as an Equivalent Fraction

4.1   Subtracting a fraction from a whole

Rewrite the whole as a fraction using  y  as the denominator :

                      6y3 - 4y2 - 3y     (6y3 - 4y2 - 3y) • y

    6y3 - 4y2 - 3y =  ——————————————  =  ————————————————————

                            1                     y          

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

STEP

5

:

Pulling out like terms

5.1     Pull out like factors :

  6y3 - 4y2 - 3y  =   y • (6y2 - 4y - 3)

Trying to factor by splitting the middle term

5.2     Factoring  6y2 - 4y - 3

The first term is,  6y2  its coefficient is  6 .

The middle term is,  -4y  its coefficient is  -4 .

The last term, "the constant", is  -3

Step-1 : Multiply the coefficient of the first term by the constant   6 • -3 = -18

Step-2 : Find two factors of  -18  whose sum equals the coefficient of the middle term, which is   -4 .

     -18    +    1    =    -17

     -9    +    2    =    -7

     -6    +    3    =    -3

     -3    +    6    =    3

     -2    +    9    =    7

     -1    +    18    =    17

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Adding fractions that have a common denominator :

5.3       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

y • (6y2-4y-3) • y - (6)     6y4 - 4y3 - 3y2 - 6

————————————————————————  =  ———————————————————

           y                          y        

Equation at the end of step

5

:

 (6y4 - 4y3 - 3y2 - 6)    

 ————————————————————— -  2

           y              

STEP

6

:

Rewriting the whole as an Equivalent Fraction :

6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  y  as the denominator :

        2     2 • y

   2 =  —  =  —————

        1       y  

Checking for a perfect cube :

6.2    6y4 - 4y3 - 3y2 - 6  is not a perfect cube

Trying to factor by pulling out :

6.3      Factoring:  6y4 - 4y3 - 3y2 - 6

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -3y2 - 6

Group 2:  6y4 - 4y3

Pull out from each group separately :

Group 1:   (y2 + 2) • (-3)

Group 2:   (3y - 2) • (2y3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

6.4    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 6

Polynomial Roots Calculator is a set of methods aimed at finding values of  y  for which   F(y)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  y  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        1.00    

     -1       2        -0.50        -5.88    

     -1       3        -0.33        -6.11    

     -1       6        -0.17        -6.06    

     -2       1        -2.00        110.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Adding fractions that have a common denominator :

6.5       Adding up the two equivalent fractions

(6y4-4y3-3y2-6) - (2 • y)      6y4 - 4y3 - 3y2 - 2y - 6

—————————————————————————  =  ————————————————————————

            y                            y            

Polynomial Roots Calculator :

6.6    Find roots (zeroes) of :       F(y) = 6y4 - 4y3 - 3y2 - 2y - 6

    See theory in step 6.4

In this case, the Leading Coefficient is  6  and the Trailing Constant is  -6.

The factor(s) are:

of the Leading Coefficient :  1,2 ,3 ,6

of the Trailing Constant :  1 ,2 ,3 ,6

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        3.00    

     -1       2        -0.50        -4.88    

     -1       3        -0.33        -5.44    

     -1       6        -0.17        -5.73    

     -2       1        -2.00        114.00    

Note - For tidiness, printing of 13 checks which found no root was suppressed

Polynomial Roots Calculator found no rational roots

Final result :

 6y4 - 4y3 - 3y2 - 2y - 6

 ————————————————————————

            y            

4 0
2 years ago
Read 2 more answers
Which ordered pair is a solution of the inequality? 3y-6<12x
BartSMP [9]
The answer is 3. (4, -2)
7 0
3 years ago
Seventy cards are numbered 1 through 70 , one number per card. One card is randomly selected from the deck. What is the probabil
Vanyuwa [196]

Answer:

Probability = \frac{2}{35}

Step-by-step explanation:

Given

Total = 70

First, we need to list the multiples of 5

M_5 = \{5,10,15,20,25,30,35,40,45,50,55,60,65,70\}

Then, multiples of 3M_3 = \{3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69\}

Next, is to list out the common elements in both

M_3\ n\ M_5 = \{15,30,45,60\}

n(M_3\ n\ M_5) = 4

The required probability is then calculated as thus:

Probability = \frac{n(M_3\ n\ M_5)}{Total}

Probability = \frac{4}{70}

Probability = \frac{2}{35}

7 0
3 years ago
Other questions:
  • How do I solve this equation
    10·2 answers
  • Plot three points that are solutions of the equation 2x-y=4
    13·2 answers
  • Which of the following is equal to the length of the major axis of an ellipse?
    12·2 answers
  • The delivery times for all food orders at a fast-food restaurant during the lunch hour are normally distributed with a mean of 1
    7·1 answer
  • PQ is parallel to RS. PR and QS are perpendicular to PQ and RS the ratio of the lengths of PR and QS is......
    7·1 answer
  • The set of data has a median of 51. Find the value of x.<br> 30, 35, x, 100
    12·1 answer
  • Determine the recursive function that defines the sequence.
    11·1 answer
  • Last answer choice is 5.0 WILL MARK BRAINLIEST PLEASE
    8·1 answer
  • 3. A circular running track is 14 mile long. Elena runs on this track, completing each lap in 120of an hour. What is Elena’s run
    9·1 answer
  • We find the "steepness," or slope, of a line passing through two points by dividing the difference in the ---Select--- -coordina
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!