Where's the picture???? I'm confusedd
Set the whole expression = to 0 and solve for x.
3x^(5/3) - 4x^(7/3) = 0. Factor out x^(5/3): x^(5/3) [3 - 4x^(2/3)] = 0
Then either x^(5/3) = 0, or 3 - 4x^(2/3) = 0.
In the latter case, 4x^(2/3) = 3.
To solve this: mult. both sides by x^(-2/3). Then we have
4x^(2/3)x^(-2/3) = 3x^(-2/3), or 4 = 3x^(-2/3). It'd be easier to work with this if we rewrote it as
4 3
--- = --------------------
1 x^(+2/3)
Then
4
--- = x^(-2/3). Then, x^(2/3) = (3/4), and x = (3/4)^(3/2). According to my 3 calculator, that comes out to x = 0.65 (approx.)
Check this result! subst. 0.65 for x in the given equation. Is the equation then true?
My method here was a bit roundabout, and longer than it should have been. Can you think of a more elegant (and shorter) solution?
Answer:
41 i think
Step-by-step explanation:
sry if its wrong and have a wonderful day :) :) :)
A. Every month Population will increase by a factor of 0.84%.
B. Every 3 months Population will increase by a factor of 2.5%.
C. Increase in population in every 20 months is 10% + 6.72% = 16.72%.
<u>Step-by-step explanation:</u>
Here, we have number of employees in a company has been growing exponentially by 10% each year. So , If we have population as x in year 2019 , an increase of 10% in population in 2020 as
which is equivalent to
.
<u>A.</u>
For each month: We have 12 months in a year and so, distributing 10% in 12 months would be like
. ∴ Every month Population will increase by a factor of 0.84%.
<u>B.</u>
In every 3 months: We have , 12 months in a year , in order to check for every 3 months
and Now, Population increase in every 3 months is
. ∴ Every 3 months Population will increase by a factor of 2.5%.
<u>C.</u>
In every 20 months: We have , 12 months in a year in which increase in population is 10% . Left number of moths for which we have to calculate factor of increase in population is 20-12 = 8. For 1 month , there is 0.84% increase in population ∴ For 8 months , 8 × 0.84 = 6.72 %.
So , increase in population in every 20 months is 10% + 6.72% = 16.72%.