Segment NO is parallel to the segment KL.
Solution:
Given KLM is a triangle.
MN = NK and MO = OL
It clearly shows that NO is the mid-segment of ΔKLM.
By mid-segment theorem,
<em>The segment connecting two points of the triangle is parallel to the third side and is half of that side.</em>
⇒ NO || KL and 
Therefore segment NO is parallel to the segment KL.
Answer:
C
Step-by-step explanation:

Therefore, the answer is C. Hope this helps!
Answer:
The most appropriate value of the critical value is 2.289.
Step-by-step explanation:
We are given that a researcher takes a random sample of 41 bulbs and determines that the mean consumption is 1.3 watts per hour with a standard deviation of 0.7.
We have to find that when constructing a 97% confidence interval, which would be the most appropriate value of the critical value.
Firstly, as we know that the test statistics that would be used here is t-test statistics because we don't know about the population standard deviation.
So, for finding the critical value we will look for t table at (41 - 1 = 40) degrees of freedom at the level of significance will be
.
Now, as we can see that in the t table the critical values for P = 1.5% are not given, so we will interpolate between P = 2.5% and P = 1%, i.e;

So, the critical value at a 1.5% significance level is 2.289.
Answer:
36, 2×2×3×3
Step-by-step explanation:
8 free throws= 8×1=8
14 2 point baskets= 14×2=28
8+28=36