Answer:
[OH-] = 6.17 *10^-10
Explanation:
Step 1: Data given
pOH = 9.21
Step 2: Calculate [OH-]
pOH = -log [OH-] = 9.21
[OH-] = 10^-9.21
[OH-] = 6.17 *10^-10
Step 3: Check if it's correct
pOH + pH = 14
[H+]*[OH-] = 10^-14
pH = 14 - 9.21 = 4.79
[H+] = 10^-4.79
[H+] = 1.62 *10^-5
6.17 * 10^-10 * 1.62 * 10^-5 = 1* 10^-14
Answer: Number of Hydrogen Bond Acceptor atoms =
2 Number of Hydrogen Bond Donor atoms =
1Explanation: Hydrogen bond interactions are formed between those molecules which contains partial positive hydrogen atoms bonded covalently to most electronegative atoms like
Oxygen,
Nitrogen and
Fluorine.
When hydrogen is attached to Oxygen, Nitrogen or Fluorine its
electron density decreases and gets partial positive charge, this partial positive charged hydrogen atom then makes hydrogen bonding with the most electronegative element (partial negative) of neighbor molecule.
In
Acetic acid there are two oxygen atoms hence there are two most electronegative elements therefore, two Hydrogen Bond Acceptor atom and each oxygen atom can accept two hydrogen bonds.
Also, it contains only one Hydrogen atom attached to oxygen atom so it has one Hydrogen Bond Donor atom.
Explanation:
Polarity is defined as the development of partial charges on the atoms of a molecule. In a water molecule, there are hydrogen and oxygen atoms.
Due to the difference in electronegativity of both hydrogen and oxygen atom there is development of partial positive charge on hydrogen atom and a partial negative charge on oxygen atom.
So, when bond between hydrogen and oxygen will break down then it will form hydrogen ions (
) and oxygen ions (
).
Ion-dipole interactions are defined as the interactions that occur when an ion interacts with the dipole of a molecule.
When an electron is added to a neutral atom to convert it into a negative ion then the amount of change taking place in its energy is known as electron affinity.
So, oxygen atom has an affinity towards cations and hydrogen atom has an affinity for anions.
Thus, we can conclude that following interactions and processes contribute to the dissolution of ionic compounds in water:
1. Affinity of oxygen towards cations
2. Ion–dipole interactions
4. Hydration
6. Affinity of hydrogen towards anions
Answer:
first at start Aarau so I just way we Z