Answer:
A and C are 180 deg out of phase (opposite points on a 360 deg wave)
Your experiment should keep one thing constant and measure the other. So vary the temp and measure the pressure. You will get a set of data that relates pressure with temp.
<span>PV = nRT
So
P and T are directly proportional.
</span>These experiments are one of either Boyle-Mariottte's, Gay-Lussac'a or Charles' law.
Answer:
Explanation:
Let that point be at a distance x from q1
Then Kq1/x^2= Kq2/ (s-x)^2
Taking square roots and simplifying, x =s /[1+(q2/q1)^0.5]
Assuming an identical distance, the rigidity of Q on 2Q is equivalent in value to the rigidity of 2Q on Q. for that reason, had the area R been stored an identical, the two forces could be equivalent. inspite of the shown fact that, via fact the area is being decreased, we could constantly consult with the equation we use to calculate those forces: F = ok(Q1xQ2)/(R^2) because R is squared and is being halved, the final result's that's it being divided by potential of a million/4. for that reason, the rigidity would be expanded by potential of four, and be 4F.
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm