By definition of average acceleration,
<em>a</em> = (20 m/s - 33.1 m/s) / (4.7 s) ≈ -2.78 m/s²
Vertically, the car is in equilibrium, so the net force is equal to the friction force in the direction opposite the car's motion:
∑ <em>F</em> = (1502.7 kg) (-2.78 m/s²) ≈ -4188.38 N ≈ -4200 N
If you just want the magnitude, drop the negative sign.
Answer:
1170 m
Explanation:
Given:
a = 3.30 m/s²
v₀ = 0 m/s
v = 88.0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(88.0 m/s)² = (0 m/s)² + 2 (3.30 m/s²) (x - 0 m)
x = 1173.33 m
Rounded to 3 sig-figs, the runway must be at least 1170 meters long.
Answer:
31677.2 lb
Explanation:
mass of hammer (m) = 3.7 lb
initial velocity (u) = 5.8 ft/s
final velocity (v) = 0
time (t) = 0.00068 s
acceleration due to gravity (g) 32 ft/s^{2}
force = m x ( a + g )
where
- m is the mass = 3.7 lb
- g is the acceleration due to gravity = 32 ft/s^{2}
- a is the acceleration of the hammer
from v = u + at
a = (v-u)/ t
a = (0-5.8)/0.00068 = -8529.4 ( the negative sign showa the its decelerating)
we can substitute all required values into force= m x (a+g)
force = 3.7 x (8529.4 + 32) = 31677.2 lb
Answer:
250 A
Explanation:
B = 5 x 10^-5 T, r = 1 m
Let current be i.
the magnetic field due to a straight current carrying conductor is given by
B = μ0 / 4π x 2i / r
5 x 10^-5 = 10^-7 x 2 x i / 1
i = 250 A