Answer:
Step-by-step explanation:
Angles 1 and 3 are same as vertical pair, they are also same with angles 5 and 7 for same reason.
<u>Angle 8 is supplementary with angle 5, so:</u>
m∠1 = m∠3 = m∠5 = 180° - 64° = 116°
Answer:
first we find the common difference.....do this by subtracting the first term from the second term. (9 - 3 = 6)...so basically, ur adding 6 to every number to find the next number.
we will be using 2 formulas....first, we need to find the 34th term (because we need this term for the sum formula)
an = a1 + (n-1) * d
n = the term we want to find = 34
a1 = first term = 3
d = common difference = 6
now we sub
a34 = 3 + (34-1) * 6
a34 = 3 + (33 * 6)
a34 = 3 + 198
a34 = 201
now we use the sum formula
Sn = (n (a1 + an)) / 2
S34 = (34(3 + 201))/2
s34 = (34(204)) / 2
s34 = 6936/2
s34 = 3468 <=== the sum of the first 34 terms:
Answer: -5.2
Step-by-step explanation:
Answer:
60.4
Step-by-step explanation:
6.04*10=60.4
i hope ti helps you
Let,
f(x) = -2x+34
g(x) = (-x/3) - 10
h(x) = -|3x|
k(x) = (x-2)^2
This is a trial and error type of problem (aka "guess and check"). There are 24 combinations to try out for each problem, so it might take a while. It turns out that
g(h(k(f(15)))) = -6
f(k(g(h(8)))) = 2
So the order for part A should be: f, k, h, g
The order for part B should be: h, g, k f
note how I'm working from the right and moving left (working inside and moving out).
Here's proof of both claims
-----------------------------------------
Proof of Claim 1:
f(x) = -2x+34
f(15) = -2(15)+34
f(15) = 4
-----------------
k(x) = (x-2)^2
k(f(15)) = (f(15)-2)^2
k(f(15)) = (4-2)^2
k(f(15)) = 4
-----------------
h(x) = -|3x|
h(k(f(15))) = -|3*k(f(15))|
h(k(f(15))) = -|3*4|
h(k(f(15))) = -12
-----------------
g(x) = (-x/3) - 10
g(h(k(f(15))) ) = (-h(k(f(15))) /3) - 10
g(h(k(f(15))) ) = (-(-12) /3) - 10
g(h(k(f(15))) ) = -6
-----------------------------------------
Proof of Claim 2:
h(x) = -|3x|
h(8) = -|3*8|
h(8) = -24
---------------
g(x) = (-x/3) - 10
g(h(8)) = (-h(8)/3) - 10
g(h(8)) = (-(-24)/3) - 10
g(h(8)) = -2
---------------
k(x) = (x-2)^2
k(g(h(8))) = (g(h(8))-2)^2
k(g(h(8))) = (-2-2)^2
k(g(h(8))) = 16
---------------
f(x) = -2x+34
f(k(g(h(8))) ) = -2*(k(g(h(8))) )+34
f(k(g(h(8))) ) = -2*(16)+34
f(k(g(h(8))) ) = 2