For a function to be continuous at an x-value, say -17, you need to make sure two things line up:
The limit from the left equals the limit from the right.

This limit equals the functions value.

The left hand limit involves the first piece, f(x) = 20x + 1:
![\begin{aligned} \lim_{x \to -17^{-}} f(x) &= \lim_{x \to -17^{-}} (20x+1)\\[0.5em]&= 20(-17)+1\\[0.5em]&= -339\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B-%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B-%7D%7D%20%2820x%2B1%29%5C%5C%5B0.5em%5D%26%3D%20%20%2020%28-17%29%2B1%5C%5C%5B0.5em%5D%26%3D%20%20%20-339%5Cendaligned%7D)
The right hand limit invovles the second piece, f(x) = -10x^2:
![\begin{aligned} \lim_{x \to -17^{+}} f(x) &= \lim_{x \to -17^{+}} (-10x^2)\\[0.5em]&= -10\cdot (-17)^2\\[0.5em]&= -2890\endaligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B%2B%7D%7D%20f%28x%29%20%26%3D%20%20%5Clim_%7Bx%20%5Cto%20-17%5E%7B%2B%7D%7D%20%28-10x%5E2%29%5C%5C%5B0.5em%5D%26%3D%20%20%20-10%5Ccdot%20%28-17%29%5E2%5C%5C%5B0.5em%5D%26%3D%20%20%20-2890%5Cendaligned%7D)
Since the two one-sided limits don't match, the function is not continuous at x=-17.
Answer:
I think it is 78
Step-by-step explanation:
The numbers are in the wrong order, If I put it in order, it would be 6 16 68 78 88 98. But there is no 78.
Hope this helps
Answer:
Hi there, I like your pfp!
The correct answer should be 11 1/2!
Step-by-step explanation:
-48/-8 = 6 4/8 = 6 1/2
6 1/2 + 5 =
11 1/2
Anyways, hope this helped!
Answer:
<h2>The value of y is <u>0.5</u>, so the answer is <u>C</u>.</h2>
Step-by-step explanation:
Find first the constant of variation.
Given: x = 3, y = 4
Find: k = ?
Formula:

Solution:

Then, find the value of y in the third box.
Given: x = 24, k = 12
Find: y = ?
Formula:

Solution:
