Answer:
The log-mean-temperature-difference is 24.03⁰C
Step-by-step explanation:
First we need to know if the heat exchanger is in parallel flow or counter-flow. However, counter flow arrangement is best used to recover heat.
L.M.T.D for counter flow is given as;
![L.M.T.D =\frac{(T_h_f_1 -T_c_f_2)-(T_h_f_2 -T_c_f_1)}{2.3log[\frac{T_h_f_1 -T_c_f_2}{T_h_f_2 -T_c_f_1}]}](https://tex.z-dn.net/?f=L.M.T.D%20%3D%5Cfrac%7B%28T_h_f_1%20-T_c_f_2%29-%28T_h_f_2%20-T_c_f_1%29%7D%7B2.3log%5B%5Cfrac%7BT_h_f_1%20-T_c_f_2%7D%7BT_h_f_2%20-T_c_f_1%7D%5D%7D)
where;
Thf₁ is the initial temperature of the hot fluid = 80°C
Tcf₂ is the final temperature of the cold fluid = 51.5°C
Thf₁ - Tcf₂ = 80 - 51.5 = 28.5⁰C
Thf₂ is the final temperature of the hot fluid = 30°C
Tcf₁ is the initial temperature of the cold fluid = 10°C
Thf₂ - Tcf₁ = 30 - 10 = 20⁰C
![L.M.T.D = \frac{28.5 -20}{2.3Log[\frac{28.5}{20}]} \\\\L.M.T.D = \frac{8.5}{0.3538} =24.03^oC](https://tex.z-dn.net/?f=L.M.T.D%20%3D%20%5Cfrac%7B28.5%20-20%7D%7B2.3Log%5B%5Cfrac%7B28.5%7D%7B20%7D%5D%7D%20%5C%5C%5C%5CL.M.T.D%20%3D%20%5Cfrac%7B8.5%7D%7B0.3538%7D%20%3D24.03%5EoC)
Therefore, the log-mean-temperature-difference is 24.03⁰C
<span>Assuming that the red and blonde hair are considered the 3/8ths of the school with light hair, 270 children in the school have red or blonde hair.</span>
We can easily get the quarts per hour rate by dividing the number of quarts by the number of hours:

Now that we have the quarts per hour rate, we can easily address the question: the factory could make

quarts in 48 hours, with a daily rate of

quarts per day
When rounding, look to the next place to the right of what you are rounding to... for example if you are rounding to the nearest hundredth, look to the thousandths place to see if the hundredths place rounds up or down. Since your number, 615.44 stops on the hundredths place, the thousandths place is automatically zero, so your number stays the same.
615.44
Answer:
k=25/8
Step-by-step explanation:
In the attached file