Based on your question where a car leaves skid marks 85m long on the highway nad getting to stop. The deceleration of the car is 3m/s^2 to estimate the speed of the car just before braking first is to analyze the problem then apply the necessary formulas. the possible answer is 510m/s
C liquid at room temperature
Переходи на сайте irkmix.top и получай много эмоций из Russia/
Answer:
t = 22.2 s
Explanation:
angular distance covered in the 36.0 s is
θ = ω(avg)t = ½(10.0 + 30.0)36 = 720 radians
720/2 = 360 radians
α = Δω/t = (30 - 10)/36 = 5/9 rad/s²
θ = ω₀t + ½αt²
360 = 10.0t + ½(5/9)t²
0 = (5/18)t² + 10.0t - 360
0 = t² + 36t - 1296
t = (-36 ±√(36² - 4(1)(-1296))) / 2
t = (-36 ±√(6480)) / 2
t = -18 ±√1620
we ignore the negative time result as it occurs before we care.
t = -18 + √1620 = 22.249223... s
Answer:
Explanation:
a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.
b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or 
c. The period, or T, of a wave is found in the equation
were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:
so
and
T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)
d. The speed of the wave is found in the equation
and since we already have the frequency and we solved for the wavelength already, filling in:
and
v = 50.0(20.0) so
v = 1.00 × 10³ m/s
And there you go!