Answer:
forces , motions , friction
Explanation:
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.
Heat flow is obtained as follows:

Where,
F =View Factor
A = Cross sectional Area
Stefan-Boltzmann constant
T= Temperature
Our values are given as
D = 0.6m

The view factor between two coaxial parallel disks would be


Then the view factor between base to top surface of the cylinder becomes
. From the summation rule


Then the net rate of radiation heat transfer from the disks to the environment is calculated as





Therefore the rate heat radiation is 780.76W
Weight=mg
g=GM/r^2
g on venus is 0.80w as radius is kept constant
m of object is kept constant
w α g
w(venus( is 0.8w
A transverse wave and a longitudinal wave.
Transverse:wave particles move at medium speed in perpendicular to the direction that the waves move
Longitudinal:wave particles move at medium speed in parallel to the direction that the wave moves
Hope this helps ^-^