Explanation:
A charge alters the space around it. This alteration of space is called the electric field. It is also defined as the electric force acting on a charged particle per unit test charge. It is given by :

Where
F is the electric force, 
The direction of electric field is in the direction of electric force. For a positive charge, the direction of electric field lines are outwards and for a negative charge, the direction of field lines are inwards.
Hence, the correct option is (c) "electric field".
Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.
Answer:
I'm not sure it is c I'm sure it is d
Answer:
V = 192 kV
Explanation:
Given that,
Charge, 
Distance, r = 0.3 m
We need to find the electric potential at a distance of 0.3 m from a point charge. The formula for electric potential is given by :

So, the required electric potential is 192 kV.