Answer:
Only the isosceles trapezoid has an area of 32 cm².
Step-by-step explanation:
Let's calculate the area of each polygon.
For the two triangles we have:

This polygon does not have an area of 32 cm².
For the rectangle we have:

This polygon does not have an area of 32 cm².
For the rectangle trapezoid we have:
So, this polygon does not have an area of 32 cm².
Finally, for the isosceles trapezoid:
This polygon does have an area of 32 cm².
Therefore, only the isosceles trapezoid has an area of 32 cm².
I hope it helps you!
Answer:
2 meters.
Step-by-step explanation:
We know that a cube of sidelength L has a volume:
V = L^3
Here, we know that the volume of water that the cube can hold is:
(1000/125) m^3
Then the volume of our cube is exactly that:
V = (1000/125) m^3
Then we have the equation:
L^3 = (1000/125) m^3
Which we can solve for L
L = ∛((1000/125) m^3 ) = (∛1000/∛125) m
Where we used that:
∛(a/b) = ∛a/∛b
Solving the cubic roots, we get:
L = (10/5) m = 2m
The length of the side of the water tank is 2 meters.
a) means what is the probability of P occurring once Q has occurred. That is 9/24 which is 3/8.
b) is 14/24 which is 7/12.
Please inform me if I gave you the correct answers :)
<h3>
Answer: 1</h3>
Point B is the only relative minimum here.
===========================================================
Explanation:
A relative minimum is a valley point, or lowest point, in a given neighborhood. Points to the left and right of the valley point must be larger than the relative min (or else you'd have some other lower point to negate its relative min-ness).
Point B is the only point that fits the description mentioned in the first paragraph. For a certain neighborhood, B is the lowest valley point so that's why we have a relative min here.
There's only 1 such valley point in this graph.
--------------
Side notes:
- Points A and D are relative maximums since they are the highest point in their respective regions. They represent the highest peaks of their corresponding mountains.
- Points A, C and E are x intercepts or roots. This is where the graph either touches the x axis or crosses the x axis.
- The phrasing "a certain neighborhood" is admittedly vague. It depends on further context of the problem. There are multiple ways to set up a region or interval of points to consider. Though visually you can probably spot a relative min fairly quickly by just looking at the valley points.
- If you have a possible relative min, look directly to the left and right of this point. if you can find a lower point, then the candidate point is <u>not</u> a relative min.