A) C2H6O1
To find the emperical formula, divide each mole value by the smallest
For carbon, 0.013/0.0065 = 2
For hydrogen, 0.038/0.0065= 6
For oxygen, 0.0065/0.0065= 1
Emperical formula = C2H6O1
Six protons, six electrons, and six neutrons. The atom you are looking for is Carbon. The mass number is 12.
Mass number = protons + neutrons
<u>Analysing the Question:</u>
We are given a 250 mL solution of 0.5M K₂Cr₂O₇
Which means that we have:
0.5 Mole in 1L of the solution
0.125 moles in 250 mL of the solution <em>[dividing both the numbers by 4]</em>
<em />
<u>Mass of K₂Cr₂O₇ in the given solution:</u>
Molar mass of K₂Cr₂O₇(Potassium Dichromate) = 194 g/mol
<em>we know that we have 0.125 moles in the 250 mL solution provided</em>
Mass = Number of moles * Molar mass
Mass = 0.125 * 194
Mass = 36.75 grams
Answer:A
Explanation:For a given amount of solute, smaller particles have greater surface area. With greater surface area, there can be more contact between particles of solute and solvent.
<h3>
Answer:</h3>
6.25 atoms
<h3>
Explanation:</h3>
<u>We are given</u>;
- The half life of Po-218 is 3 minutes
- Initial sample is 200 atom
- Time of decay is 15 minutes
We are required to calculate the remaining mass after decay;
Half life refers to the time taken for original amount of a radioactive sample to decay to a half.
To calculate the remaining mass we use the formula;
N = N₀ × 0.5^n where n is the number of half lives, N is the new amount and N₀ is the original amount.
n = 15 min ÷ 3 min
= 5
Therefore;
New amount = 200 atom × 0.5^5
= 6.25 atoms
Therefore; the amount of the sample that will remain after 15 minutes is 6.25 atoms.