The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9
a) NH₃ molecules have stronger intermolecular attractions than CH₄ molecules.
Explanation:
Ammonia molecules have stronger intermolecular attractions compared to methane.
Ammonia molecules have london dispersion forces and hydrogen bonds between their molecules.
Methane molecules have only london dispersion forces in their structure.
- hydrogen bonds are very strong attractive forces between molecules in which the hydrogen of a molecule is attracted by a more electronegative atom of another usually oxygen, nitrogen and fluorine.
- London dispersion forces are weak forces of attraction between heteronuclear atoms.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
Answer is: 39,083kJ.
m(coal) = 2,00g.
m(water) = 500g.
ΔT = 43,7°C - 25°C = 18,7°C, <span>difference at temperatures.</span>
c(water) = 4,18 J/g·°C, <span>specific heat of water
</span>Q = m(water)·ΔT·c(water), heat of reaction.
Q = 500g·18,7°C·4,18J/g·°C.
Q = 39083J = 39,083kJ.
Answer:
H. 2 blue, 3 yellow, and 12 green
Explanation:
Aluminium atoms (Al) = Blue Beads
Oxygen Atoms (O) = Green Beads
Sulfur (S) = Yellow beads
From the compound Al2(SO4)3, the number of atoms present are;
Al = 2
S = 3
O = 12
This means the model would contain;
2 Blue beads
12 Green beads
3 Yellow beads
The correct option is; H. 2 blue, 3 yellow, and 12 green