The answer is dipole-dipole and dipole-induced dipole forces.
The dipole-induced dipole is a kind of interaction induced by a polar molecule by disturbing the arrangement of electrons.
- In methyl cyclohexanone molecules, there is a permanent dipole moment due to dipole moment vectors not canceling.
- There is induction of dipole by disturbing the electronic arrangement.
- A permanent dipole moment is created in this interaction.
- Dipole-dipole interactions are defined as the forces that is formed from the close linkage of permanent or induced dipoles.
- These forces are called Van der Waal forces.
- Proteins contain a large number of these interactions, which vary considerably in strength.
To learn more about dipole-dipole interactions visit:
brainly.com/question/14173758
#SPJ4
Once for the water and once for the copper. Set up a table that accounts for each of the variables you know, and then identify the ones you need to obtain. Give me a moment or two and I will work this out for you.
Okay, so like I said before, you will need to use the equation twice. Now, keep in mind that when the copper is placed in the water (the hot into the cold), there is a transfer of heat. This heat transfer is measured in Joules (J). So, the energy that the water gains is the same energy that the copper loses. This means that for your two equations, they can be set equal to each other, but the copper equation will have a negative sign in front to account for the energy it's losing to the water.
When set equal to each other, the equations should resemble something like this:
(cmΔt)H20 = -(cmΔt)Cu
(Cu is copper).
Remember, Δt is the final temperature minus the initial temperature (T2-T1). We are trying to find T2. Since we are submerging the copper into the water, we can assume that the final temperature at equilibrium is the same for both the copper and the water. At a thermodynamic equilibrium, there is no heat transfer because both materials are at the same temperature.
T2Cu = T2H20
Now, the algebra for this part of the problem is a bit confusing, so make sure you keep track of your variables. If done right, the algebra should work out so you have this:
T2 = ((cmT1)Cu + (cmT1)H20) / ((cm)H20 + (cm)Cu)
Insert the values for the variables. Once you plug and chug, your final answer should be
26.8 degrees Celsius.
Acids have a pH less than 7 (pH < 7)
Bases have a pH more than 7 (pH > 7)
A pH of 7 would be neutral
Hope this helped!
Stars that form shapes, or are connected together.
The explanation of the how the various concentrations of acid will affect the amount of limestone has been given below.
Effects of acid rain on limestone:-
- When an acid combines with a carbonate, it produces carbon dioxide as a gas and forms a salt that is soluble in the carbonate and acid's water.
- There are several gases in the atmosphere that can dissolve in precipitation such as rain and snow.
- Some may produce acids in rain water, such as carbonic acid, sulfuric acid, and nitric acid.
- Because the concentration is modest, the rain is not highly acidic, but it is acidic enough to react with the carbonates that make up limestone.
Thus we discussed the affects of acid rain on limestones above.
Learn more about Acid Rain here:
brainly.com/question/718250
#SPJ10