Answer:
OCO
Another way of writing CO₂
Explanation:
A reaction equation has <u>reactants on the left</u> and <u>products on the right</u>.
The reactants are carbon and oxygen. The product is carbon dioxide.
C + O₂ → CO₂
You might see the equation both ways.
C + O₂ → OCO
C + O₂ in the products would mean no reaction has occurred. The problem can <u>solid carbon can burn in oxygen</u>, so a reaction will occur. For no reaction, you would put "NR" in the products.
<u>OCO is the structural way of writing CO₂.</u> Both have one carbon atom (C) and two oxygen atoms (O).
C + 2O is not possible. Oxygen, if alone, has to be at least O₂ because it's a <u>diatomic molecule</u>.
This is a one-step unit analysis problem. Since we are staying in moles, grams of our compound, and thus molar mass, is not needed.
1 mole is equal to 6.022x10²³ particles as given, so:

<h3>
Answer:</h3>
2.49 mol
Let me know if you have any questions.
Answer : The mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Explanation : Given,
Mass of oxygen in sulfur dioxide = 3.49 g
Mass of sulfur in sulfur dioxide = 3.50 g
Mass of oxygen in sulfur trioxide = 9.00 g
Mass of sulfur in sulfur trioxide = 6.00 g
Now we have to calculate the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide.
Mass of oxygen per gram of sulfur for sulfur dioxide = 
Mass of oxygen per gram of sulfur for sulfur dioxide = 
and,
Mass of oxygen per gram of sulfur for sulfur trioxide = 
Mass of oxygen per gram of sulfur for sulfur trioxide = 
Thus, the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Answer: The weight of the object on earth =441N
Weight of the object on moon = 72N