Answer:
This can be solved using Dalton's Law of Partial pressures. This law states that the total pressure exerted by a gas mixture is equal to the sum of the partial pressure of each gas in the mixture as if it exist alone in a container. In order to solve, we need the partial pressures of the gases given. Calculations are as follows:
Explanation:
P = 3.00 atm + 2.80 atm + 0.25 atm + 0.15 atm
P = 6.8 atm
3.5 atm = x (6.8 atm)
x = 0.51
Answer:
192.9
Explanation:
From the question,
Ke = [HCL]²/[H₂][CL₂].......................... Equation 1
Where Ke = Equilibrium constant.
Given: [HCL] = 0.0625 M, [H₂] = 0.0045 M, [CL₂] = 0.0045 M
Substitute these values into equation 1
Ke = (0.0625)²/(0.0045)(0.0045)
ke = (3.90625×10⁻³)/(2.025×10⁻⁵)
ke = 1.929×10²
ke = 192.9
Hence the equilibrium constant of the system = 192.9
Answer:30 L
Explanation:
Initial Volume
=
V
1
=
60
l
i
t
e
r
Initial Temperature
=
T
1
=
546
K
Final Temperature
=
T
2
=
273
K
Final Vloume
=
V
2
=
?
?
Sol:-
Since the pressure is constant and the question is asking about temperature and volume, i.e,
V
1
T
1
=
V
2
T
2
⇒
V
2
=
V
1
⋅
T
2
T
1
=
60
⋅
273
546
=
60
2
=
30
l
i
t
e
r
⇒
V
2
=
30
l
i
t
e
r
Hence the new volume of the gas is
30
l
i
t
e
r
Answer:
use visual studio code and put in this print{3:2}-1
Explanation:
The shape of XeO₂F₂ is Trigonal bi-pyramidal see-saw tetrahedron (see attached pictures)
- As you said the hybridization of Xe here is sp³d so its geometry has to be Trigonal bi-pyramidal in which F atom located on axial positions but for the final shape we exclude lone pair on Xe to give
see-saw shape (see second picture)
- Remember that we have 5 pairs (4 bond pairs + 1 lone pair) and we have to place lone pair at equatorial position.