Answer:
Options A, B, and C are all possible.
Explanation:
We know that the instantaneous velocity of the dog at 3:14PM is possitive to toward the flowers. But what about the acceleration to toward the flowers?
If the dog is decreasing speed at 3:14PM, it means that acceleration is negative toward the flowers, hence (since F=ma) the net force points away from the flowers.
If the dog is increasing speed at 3:14PM, it means that acceleration is positive toward the flowers, hence (since F=ma) the net force points toward the flowers.
If the dog is not increasing nor decreasing speed at 3:14PM, it means that acceleration is 0, hence (since F=ma) the net force is null and it does not point neighter to toward the flowers nor away from the flowers. This happens when the forces acting on the dog are equal to both sides.
Answer:
(a) Angular velocity will be 125.6 rad/sec
(b) Linear velocity will be 144.44 m /sec
(c) Centripetal acceleration = 1849.3031 g
Explanation:
We have given diameter d = 2.30 m
So radius r = 
(a) Speed is given as 1200 rev/min
We know that angular velocity is given by 
(b) Linear speed is given by 
(c) Centripetal acceleration is given by
We know that 
So 
Initial volume of mercury is
V = 0.1 cm³
The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.
Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³
The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
= (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
= 4.5 cm
Answer: 4.5 cm
He preformed the first ever successful open heart surgery
If each side is 0.1 feet extra,
The volume will be 5.1*2.1*1.1= about 11.781.
Perhaps this helps.