Answer:
RQS = 63
PQR = 126
Step-by-step explanation:
because QS is an angle bisector, PQS =SQR and PQR = 2*PQS.
Answer:
Caja de plaquetas = x = 30 €
Caja de azulejos = y = 35 €
Step-by-step explanation:
Deje que el costo de
Caja de plaquetas = x
Cuadro de mosaico = y
Por Berta
Para reformar su cocina, Berta compró la semana pasada 2 cajas de baldosas de plaquetas para el suelo y 4 cajas de baldosas para la pared por 200 €.
2x + 4y = 200 ...... Ecuación 1
Hoy
Hoy compré 2 cajas más de plaquetas y otras 2 de tejas por 130 €.
2x + 2y = 130 ..... Ecuación 2
Resolvemos usando el método de Eliminación
2x + 4y = 200 ...... Ecuación 1
2x + 2y = 130 ..... Ecuación 2
Restar la ecuación 2 de 1
2 años = 70
y = 70/2
y = 35 €
Resolviendo para x
2x + 4y = 200 ...... Ecuación 1.
2x + 4 × 35 = 200
2x + 140 = 200
2x = 200 - 140
2x = 60
x = 60/2
x = 30 €
el costo de
Caja de plaquetas = x = 30 €
Caja de azulejos = y = 35 €
Answer:
<h2>≈ 13</h2>
Step-by-step explanation:
First ,we round 1.79 to the nearest whole dollar:
since 7 ≥ 5 then 1.79 rounded to the nearest whole dollar is 2
now ,we can estimate the greatest number she can download:
26/2 = 13
The question is incomplete, here is the complete question:
The half-life of a certain radioactive substance is 46 days. There are 12.6 g present initially.
When will there be less than 1 g remaining?
<u>Answer:</u> The time required for a radioactive substance to remain less than 1 gram is 168.27 days.
<u>Step-by-step explanation:</u>
All radioactive decay processes follow first order reaction.
To calculate the rate constant by given half life of the reaction, we use the equation:
where,
= half life period of the reaction = 46 days
k = rate constant = ?
Putting values in above equation, we get:
The formula used to calculate the time period for a first order reaction follows:
where,
k = rate constant =
t = time period = ? days
a = initial concentration of the reactant = 12.6 g
a - x = concentration of reactant left after time 't' = 1 g
Putting values in above equation, we get:
Hence, the time required for a radioactive substance to remain less than 1 gram is 168.27 days.
Answer:
P = 1/6
Step-by-step explanation: