The work done by the force is 47.1 J
Explanation:
The work done by a force in moving an object is given by
(1)
where
F is the magnitude of the force
d is the distance covered by the object
is the angle between the direction of the force and the motion of the object
In this problem, the force applied to the object is
F = 3.0 N
This force is always tangential to the track: this means that at every instant, the force is parallel to the motion of the object, so

And the distance covered is equal to the circumference of the circle, which is:

where r = 2.5 m is the radius.
Now we can substitute into eq.(1) to find the work done:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
Explain step by step
Explanation:
Collisions with asteroids, comets and other stuff from space have been responsible for huge landmarks in our planet’s history: global shifts in climate, the creation of our moon, the reshuffling of our deepest geology, and the extinction of species.
Asteroid threats pop up in the news every now and then, but the buzz tends to fizzle away as the projectiles pass us by. Other times, as with the 2013 Chelyabinsk meteor in Russia, we don’t know they’re here until they’re here.
Perhaps most useful to remember is that when near-Earth objects (including asteroids, comets and meteoroids) enter the atmosphere, they’re called meteors; and if there’s anything left when they hit the ground, the resulting object is called a meteorite. We tend to focus on asteroids when talking about potential collisions, because they’re more likely to hit us than other stuff like comets, but still big enough to pose a threat.
Answer:
Work done, W = 1786.17J
Explanation:
The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "
Mass of a painter, m = 75 kg
He climbs 2.75-m ladder that is leaning against a vertical wall.
The ladder makes an angle of 30 degrees with the wall.
We need to find the work done by the gravity on the painter.
The angle between the weight of the painter and the displacement is :
θ = 180 - 30
= 150°
The work done by the gravity is given by :

Hence, the required work done is 1786.17 J.
less mass is more mass but less energy in more mass. less mass has more energy
Answer:

Explanation:
Since
, we calculate the resistance rate by deriving this formula with respect to time:

Deriving what is left (remember that
):

So we have:

Which for our values is (the rate of <em>I(t)</em> is decreasing so we put a negative sign):
