Answer:

Explanation:
Given:
- mass of John,

- mass of William,

- length of slide,

(A)
height between John and William, 
<u>Using the equation of motion:</u>

where:
v_J = final velocity of John at the end of the slide
u_J = initial velocity of John at the top of the slide = 0
Now putting respective :


<u>Now using the law of conservation of momentum at the bottom of the slide:</u>
<em>Sum of initial momentum of kids before & after collision must be equal.</em>

where: v = velocity with which they move together after collision

is the velocity with which they leave the slide.
(B)
- frictional force due to mud,

<u>Now we find the force along the slide due to the body weight:</u>



<em><u>Hence the net force along the slide:</u></em>

<em>Now the acceleration of John:</em>



<u>Now the new velocity:</u>



Hence the new velocity is slower by

Answer:
1 casparian strips are present in the root of endodermis.
2 the endarch condition is the character fature of stem.
Answer:
man will move in opposite direction with speed

Explanation:
As we know that man is lying on the friction-less surface
so here net force along the surface is zero
so if we take man + stone as a system then net change in momentum of this system will become zero
so here we have


here we have



Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:



b) Force on deep end:



c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:




2) Force on the triangular part:

here
h = h(d) - h(s)
h = 10-4
h = 6ft



now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:


