Answer : The resonance structure of
is shown below.
Explanation :
Resonance structure : It is defined as when more than one Lewis structure can be drawn, the molecule or ion is said to have resonance.
Resonance is the concept where electrons (bonds) are delocalized over three or more atoms which cannot be depicted with one simple Lewis structure.
First we have to draw Lewis-dot structure.
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that sulfur has '6' valence electrons, carbon has '6' valence electrons and nitrogen has '5' valence electron.
Therefore, the total number of valence electrons in
= 6 + 4 + 5 = 15
According to Lewis-dot structure, there are 7 number of bonding electrons and 8 number of non-bonding electrons.
In SCN, carbon atom is the central atom and sulfur and nitrogen are the neighboring atoms.
The resonance structure of
is shown below.
Answer:

Explanation:
Data:
I = 2.15 A
t = 8 min 24 s
T = 26.0 °C
V = 65.4 mL
p = 774.2 To
1. Write the equation for the half-reaction
2H₂O ⟶ O₂ + 4H⁺ + 4e⁻
2. Calculate the moles of oxygen
V = 0.0654 L
T = (26.0 + 273.15) K = 299.15 K

3. Calculate the moles of electrons

4. Calculate the number of coulombs
t = 8 min 24 s =504 s
Q = It = 504 s × 2.10 C·s⁻¹= 1058 C
5. Calculate the number of electrons

6. Calculate Avogadro's number

Answer:
A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.
A series of six elements called the metalloids separate the metals from the nonmetals in the periodic table. The metalloids are boron, silicon, germanium, arsenic, antimony, and tellurium. These elements look metallic; however, they do not conduct electricity as well as metals so they are semiconductors. They are semiconductors because their electrons are more tightly bound to their nuclei than are those of metallic conductors. Their chemical behavior falls between that of metals and nonmetals. For example, the pure metalloids form covalent crystals like the nonmetals, but like the metals, they generally do not form monatomic anions. This intermediate behavior is in part due to their intermediate electronegativity values. In this section, we will briefly discuss the chemical behavior of metalloids and deal with two of these elements—boron and silicon—in more detail.
Explanation:
i hope this helps you :)