Answer:
b the valence of the atoms involved
Explanation:
i just did this
To determine the pH of a solution which has 0.195 M hc2h3o2 and 0.125 M kc2h3o2, we use the ICE table and the acid dissociation constant of hc2h3o2 <span>to determine the concentration of the hydrogen ion present at equilibrium. We do as follows:
HC2H3OO = H+ + </span>C2H3OO-
KC2H3OO = K+ + C2H3OO-
Therefore, the only source of hydrogen ion would be the acid. We use the ICE table,
HC2H3OO H+ C2H3OO-
I 0.195 0 0.125
C -x +x +x
------------------------------------------------------------------
E 0.195-x x 0.125 + x
Ka = <span>1.8*10^-5 = (0.125 + x) (x) / 0.195 -x
x = 2.81x10^-5 M = [H+]
pH = - log [H+]
pH = -log 2.81x10^-5
pH = 4.55
Therefore, the pH of the resulting solution would be 4.55.</span>
Answer:
The given substance is cast iron.
Explanation:
Given data:
Mass of substance = 50 g
Heat absorbed = 23000 J
Initial temperature = 250°C
Final temperature = 1250°C
Which metal is this = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 1250°C - 250°C
ΔT = 1000°C
23000 j = 50 g ×c ×1000 °C
23000 J = 50,000 g. °C×c
c = 23000 J /50,000 g. °C
c = 0.46 J/g.°C
The given substance is cast iron.