Explanation:
The two ways that energy can be transferred are by doing work and by heat transfer.
Answer:
<em>Mg = 24.30 g/mol) Mg(s) + 2HCl(aq) MgCl2(aq) + H2(g) Hint: 1 mole of gas at STP occupies 22.4 L</em>
Answer: The mass percentage of
is 5.86%
Explanation:
To calculate the mass percentage of
in the sample it is necessary to know the mass of the solute (
in this case), and the mass of the solution (pesticide sample, whose mass is explicit in the letter of the problem).
To calculate the mass of the solute, we must take the mass of the
precipitate. We can establish a relation between the mass of
and
using the stoichiometry of the compounds:

Since for every mole of Tl in
there are two moles of Tl in
, we have:

Using the molar mass of
we have:

Finally, we can use the mass percentage formula:

Answer:It is a picture with a boat sailing on the water with sound waves going down to an old and sunken ship but the waves then go back up to the boat in a different angle.
Explanation:
hope it works thx
Answer:
Xe:[Kr]4d¹⁰5(sp³d³)₆⁺² => Octahedral Geometry (AX₆)⁺²
Explanation:
Xe:[Kr]4d¹⁰(5s²5p₋₁²p₀²p₁²5d₋₂d₋₁d₀)⁺² => Xe[Kr]5(sp³d³)₆²
Ca. #Valence e⁻ = Xe + 6F - 2e⁻ = 1(8) + 6(7) - 2 = 48
Ca. #Substrate e⁻ = 6F = 6(8) = 48
#Nonbonded free pairs e⁻ = (V - S)/2 = (48 - 48)/2 = 0 free pairs
#Bonded pairs e⁻ = 6F substrates = 6 bonded pairs
BPr + NBPr = 6 + 0 = 6 e⁻ pairs => Geometry => [AX₆]⁺² => Octahedron
Xe:[Kr]4d¹⁰(5s²5p₋₁²p₀²p₁²5d₋₂d₋₁d₀)⁺² => Xe[Kr]5(sp³d³)₆⁺²
XeF₆⁺² => 6(sp³d³) hybrid orbitals => Octahedral Geometry (AX₆)