Answer:
The correct answer is entropy change of the surrounding plus the entropy change of the system must be positive.
Explanation:
The term entropy is a state function.Entropy can be defined as the disorder or randomness of the molecules in a system.
A spontaneous reaction is a type of reaction which deals with the release of free energy.The change of free energy in case of spontaneous reaction is always negative.
According to the second law of thermodynamics a spontaneous reaction will occur in a system if the total entropy of both system and surrounding increases during the reaction.
Answer : The most likely happens during this reaction is, Oxidation-reduction
Explanation :
The balanced reaction will be,
In this reaction, neutral iron loses 3 electrons and oxidizes in (+3) state, and neutral oxygen gains 2 electrons and reduces in (-2) state,
When iron react with oxygen gas to give iron oxide. This process is known as iron rusting. During the reaction, oxidation-reduction process occurs.
Oxidation : It is a type of chemical reaction in which a substance loses its electrons. Or we can say that in oxidation, the oxidation number increases.
Reduction : It is a type of chemical reaction in which a substance gains its electrons. Or we can say that in reduction, the oxidation number decreases.
low level waste
Explanation:
Low level wastes are nuclear wastes generated from hospitals and industries as well as the nuclear fuel cycle, and is comprised of paper, rags, tools, clothing, filters, etc., which contain small amounts of mostly short-lived radioactivity.
- Low level wastes are typically radioactive in nature and are difficult to dispose.
- They originate from radioactive processes in the hospital and nuclear reactors.
- There has been growing concerns about the safe disposal of radioactive wastes over the years.
- They are made up of materials with short lived radioactivity.
Learn more:
Transmutation brainly.com/question/3433940
#learnwithBrainly
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
Answer:
Fundamental properties of atoms including atomic number and atomic mass. The atomic number is the number of protons in an atom, and isotopes have the same atomic number but differ in the number of neutrons.
Explanation:
Fundamental properties of atoms including atomic number and atomic mass. The atomic number is the number of protons in an atom, and isotopes have the same atomic number but differ in the number of neutrons.