<h3>Given</h3>
- Set A: A = {-26, -25, -24, -23, - 22, - 21}
- Set B: B ∈ {x: x is even, x ≥ 6 and x ≤ 20}
<h3>(a) </h3>
<em />
<em>Cardinality means the number of elements in the set.</em>
Cardinality of the set A:
n(A) = 6, since we can count 6 elements.
Set B has even numbers between 6 and 20, both included:
- B = {6, 8, 10, 12, 14, 16, 18, 20}
Then its cardinality is:
<h3>(b) </h3>
To solve this we need to compare the elements of sets A or B with numbers given:
- -22 ∈ A, True ⇒ -22 is listed as element of A
- 6 ∈ B, True ⇒ 6 is listed as element of B
- - 21 ∉ A, False ⇒ - 21 is listed as element of A
- 2 ∈ B, False ⇒ 2 is not listed as element of B
3x - 2y - 1 = 0
y = 5x + 4
3x - 2(5x + 4) - 1 = 0
3x - 10x - 8 - 1 = 0
-7x - 9 = 0
-7x = 9
x = -9/7
y = 5x + 4
y = 5(-9/7) + 4
y = -45/7 + 4
y = -45/7 + 28/7
y = - 17/7
solution is (-9/7, -17/7)
Answer:
Domain : all real numbers
Step-by-step explanation:
The domain is the input values
What values can x be?
X can be any real number
Domain : all real numbers