Using the Michaelis-Menten equation competitive inhibition, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
<h3>What is the Ki for the inhibitor?</h3>
The Ki of an inhibitor is known as the inhibition constant.
The inhibition is a competitive inhibition as the Vmax is unchanged but Km changes.
Using the Michaelis-Menten equation for inhibition:
Making Ki subject of the formula:
where:
- Kma is the apparent Km due to inhibitor
- Km is the Km of the enzyme-catalyzed reaction
- [I] is the concentration of the inhibitor
Solving for Ki:
where
[I] = 26.7 μM
Km = 1.0
Kma = (150% × 1 ) + 1 = 2.5
Ki = 26.7 μM/{(2.5/1) - 1)
Ki = 53.4 μM
Therefore, the Inhibition constant, Ki of the inhibitor is 53.4 μM.
Learn more about enzyme inhibition at: brainly.com/question/13618533
The atomic radius increases as you would go down a particular group on the periodic table of elements. This is because along with a greater number of protons, there would also be electrons as well, and thus the need of electron shells surrounding the atom would also be required, to compensate for the more electrons, as according to the bohr model, each shell contains 8 electrons in its electron shell. Thus the distance from the nucleus to the outermost shell increases, the atomic radius.
Answer:
A. O=C=O and O≡C−O
Explanation:
Resonance:
When the electron distribution on the molecule become uneven like one molecule have more electron compare to other.Resonance occurs due to overlap of the orbitals.When electron flow through pi system then resonance occurs.
So the option A is correct.
A. O=C=O and O≡C−O
Here we assume that disintegration has occur so the normal t½ formular will not be used
mathematically we..⅛×5600 =700
therefore it is about 700years option A