Answer:
The volume you need to transfer from the stock solution is 0.145 l
Explanation:
Since the number of moles of lactose in the volume of stock solution that you transfer will be the same as the number of moles of lactose in the final solution, you can use this expression:
number of moles in volume to transfer = number of moles in the final solution
Since number of moles = concentration * volume (if the concentration is expressed in molarity), then:
Ci * Vi = Cf * Vf
where:
Ci = concentration of the stock solution.
Vi = volume of the stock solution to be transferred.
Cf = concentration of the final solution
Vf = volume of the final solution
Then, replacing with the data:
518 mM * Vi = 16.7 mM * 4.5 l
Vi = 16.7 mM * 4.5 l / 518 mM
<u>Vi = 0.145 l or 145 ml</u>
Notice that any concentration unit can be used, as long as the units of the concentration of the stock and final solution are the same.
If you were to take water (like many other materials) and break it up into almost the smallest things you could, you’d get molecules. If the molecules are stuck together really tightly in a regular pattern, then they’re called a solid. The solid form of water is ice. This actually makes a lot of sense, because it certainly does seem like all the little parts of a solid (like ice) are stuck together very tightly.
When you heat something up, it makes the molecules move faster. If you heat up a typical solid, it melts and becomes a liquid. In a liquid (like water), the molecules are still stuck together, but they can move around some. What actually happens is that the molecules are still sort of sticking together, but they’re constantly breaking apart and sticking to different molecules. This also makes sense when you think about water. Water sort of sticks together, but it breaks apart /really/ easily.
If you heat a liquid like water up even more (like if you put it in a pot on the stove), then the molecules will move around so fast that they can’t even hold on to each other at all. When this happens, all of the molecules go flying apart and become a gas (like when you boil water to make steam). The process of gas molecules leaving the liquid to go into the gas is called "evaporation." The opposite process is called "condensation."
<span>Hope this answers your question!</span>
The Answer is no. hope this help c:
Answer:
Would it be 10.2 mL? I used the formula M1V1=M2V2
Explanation:
I think the person that asked it correct
Weight is the force exerted by the gravity on that object, therefore when an astronaut is in space with no gravity he is weightless. Mass is the actual amount of matter contained in a body, this won’t change if the gravity changes.