We use different models for different types of variation. For example, linear variation is associated with the formula y=ax, or the more familiar y=mx+b (the equation of a straight line). Cubic variation: y=a*x^3. In the present case we're discussing quadratic variation; perhaps that will ring a bell with you, reminding you that y=ax^2+bx+c is the general quadratic function.
Now in y our math problem, we're told that this is a case of quadratic variation. Use the model y=a*x^2. For example, we know that if x=2, y =32. Mind substituting those two values into y=a*x^2 and solving for y? Then you could re-write y=a*x^2 substituting this value for a. Then check thisd value by substituting x=3, y=72, and see whether the resulting equation is true or not. If it is, your a value is correct. But overall I got 16!
Answer:
130,110,40,90,165
Step-by-step explanation:
supplementary angles add up to 180
so 180-50= 130
180-70=110
etc
Since a cm is 1/100th of a meter, 43 cm would simply be 43/100. Hope that helps!
Answer: no not less than 23