-9+4=5 because two negative signs makes a positive
If the parabola has y = -4 at both x = 2 and x = 3, then since a parabola is symmetric, its axis of symmetry must be between x = 2 and x = 3, or at x = 5/2. Our general equation can then be:
y = a(x - 5/2)^2 + k
Substitute (1, -2): -2 = a(-3/2)^2 + k
-2 = 9a/4 + k
Substitute (2, -4): -4 = a(-1/2)^2 + k
-4 = a/4 + k
Subtracting: 2 = 2a, so a = 1. Substituting back gives k = -17/4.
So the equation is y = (x - 5/2)^2 - 17/4
Expanding: y = x^2 - 5x + 25/4 - 17/4
y = x^2 - 5x + 2 (This is the standard form.)
I think the answer is 1/16 because there is only one way that HTHT can fall out of 16 possible outcomes. That's what I think. Hope this helps!
Answer:
y = 89 x = 123
Step-by-step explanation:
since they're both in standard form, its easier to do the process of elimination
x - y = 34
-x -y -212
------------------
-2y = -178
y = 89
now plug in y to any one of those two equations
x - y = 34
x - 89 = 34
x = 123
<em>to check:</em>
<em>x</em><em> </em><em>+</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>2</em><em>1</em><em>2</em>
<em>1</em><em>2</em><em>3</em><em> </em><em>+</em><em> </em><em>8</em><em>9</em><em> </em><em>=</em><em> </em><em>2</em><em>1</em><em>2</em>
<em>2</em><em>1</em><em>2</em><em> </em><em>=</em><em> </em><em>2</em><em>1</em><em>2</em>