Answer:

Explanation:
Hello!
In this case, since the combustion of the hamburger released 335.4 kcal of energy and that energy is received by the calorimeter, we can write:

And the heat of the calorimeter is written in terms of the temperature change and the calorimeter constant:

Thus, given the released heat by the hamburger due to its combustion and the temperature change, Cv for the calorimeter turns out:

Best regards!
Complementary Base Pairing. Specific pairs can only go together, so when guanine and adenine pair up, its Complementry Base Pairing :)
Hope this helps! Please correct me if im wrong :)
It would still have oceans but no atmospheric water in Earth if no icy debris had arrived.
A. It would still have oceans but no atmospheric water.
<u>Explanation:</u>
Seas characterize our home planet, covering most of the Earth's surface and driving the water cycle that commands our territory and climate. However, progressively significant still, the narrative of our seas wraps our home in a far bigger setting that ventures profound into the universe and spots us in a rich group of sea universes that range our nearby planetary group and past.
It would in any case have seas yet no air water on Earth if no frigid flotsam and jetsam had shown up. For a long time, it was accepted that the frosty moons were only that - solidified husks, strong to their center. However, lately that thought has steadily been supplanted by a fresher, additionally energizing worldview.
Before proceeding, we should write the reaction equation to better understand what is happening:
2AgNO₃ + Na₂S → Ag₂S + 2NaNO₃
Now, we may apply the law of conservation of mass, due to which the total mass before a chemical reaction is equivalent to the total mass after a chemical reaction. Therefore:
Mass of silver nitrate + mass of sodium sulfide = mass of silver sulfide + mass of sodium nitrate
Mass of silver nitrate + 156.2 = 595.8 + 340
Mass of silver nitrate = 779.6 grams