Answer:
Confidence Interval: (21596,46428)
Step-by-step explanation:
We are given the following data set:
10520, 56910, 52454, 17902, 25914, 56607, 21861, 25039, 25983, 46929
Formula:
where
are data points,
is the mean and n is the number of observations.
![Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}](https://tex.z-dn.net/?f=Mean%20%3D%20%5Cdisplaystyle%5Cfrac%7B%5Ctext%7BSum%20of%20all%20observations%7D%7D%7B%5Ctext%7BTotal%20number%20of%20observation%7D%7D)
![Mean =\displaystyle\frac{340119}{10} = 34011.9](https://tex.z-dn.net/?f=Mean%20%3D%5Cdisplaystyle%5Cfrac%7B340119%7D%7B10%7D%20%3D%2034011.9)
Sum of squares of differences = 551869365.6 + 524322983.6 + 340111052.4 + 259528878 + 65575984.41 + 510538544 + 147644370.8 + 80512934.41 + 64463235.21 + 166851472.4 = 2711418821
![S.D = \sqrt{\frac{2711418821}{9}} = 17357.09](https://tex.z-dn.net/?f=S.D%20%3D%20%5Csqrt%7B%5Cfrac%7B2711418821%7D%7B9%7D%7D%20%3D%2017357.09)
Confidence interval:
![\mu \pm t_{critical}\frac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=%5Cmu%20%5Cpm%20t_%7Bcritical%7D%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
Putting the values, we get,
![t_{critical}\text{ at degree of freedom 9 and}~\alpha_{0.05} = \pm 2.2621](https://tex.z-dn.net/?f=t_%7Bcritical%7D%5Ctext%7B%20at%20degree%20of%20freedom%209%20and%7D~%5Calpha_%7B0.05%7D%20%3D%20%5Cpm%202.2621)
![34011.9 \pm 2.2621(\frac{17357.09}{\sqrt{10}} ) = 34011.9 \pm 12416.20 = (21595.7,46428.1) \approx (21596,46428)](https://tex.z-dn.net/?f=34011.9%20%5Cpm%202.2621%28%5Cfrac%7B17357.09%7D%7B%5Csqrt%7B10%7D%7D%20%29%20%3D%2034011.9%20%5Cpm%2012416.20%20%3D%20%2821595.7%2C46428.1%29%20%5Capprox%20%2821596%2C46428%29)