Answer:
Zero
Explanation:
Two long parallel wires each carry the same current I in the same direction. The magnetic field in wire 1 is given by :

Magnetic force acting in wire 2 due to 1 is given by :


Similarly, force acting in wire 1 is given by :
According to third law of motion, the force acting in wire 1 will be in opposite direction to wire 2 as :

So, the total magnetic field at the point P midway between the wires is in what direction will be zero as the the direction of forces are in opposite direction.
Weight is different (but mass is the same)
Before the engines fail
, the rocket's horizontal and vertical position in the air are


and its velocity vector has components


After
, its position is


and the rocket's velocity vector has horizontal and vertical components


After the engine failure
, the rocket is in freefall and its position is given by


and its velocity vector's components are


where we take
.
a. The maximum altitude occurs at the point during which
:

At this point, the rocket has an altitude of

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve
for
, then add 3 seconds to this time:

So the rocket stays in the air for a total of
.
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute
for this time
:
